Toán học - Bài tập về bội chung, bội chung nhỏ nhất

Bài 2: Khi cho học sinh của khối 6 trường THCS Thanh Mai xếp hàng 6, hàng 8 , hàng 10 đều vừa đủ , không thừa bạn nào. Tính số học sinh khối 6 của trường đó biết rằng số học sinh đó trong khoảng từ 200 đến 300 học sinh.

Bài 3: Số học sinh của lớp 6C khi xếp hàng 5, hàng 7 đều không lẻ hàng. Tính số học sinh của lớp 6C biết số học sinh đó trong khoảng từ 30 đến 40 bạn.

Bài 4: Một trường tổ chức cho khoảng 700 đến 800 học sinh đi tham quan. Tính số học sinh của trường đó biết rằng nếu xếp 40 hay 50 học sinh lên một xe thì đều vừa đủ.

Bài 5: Ba bạn An, Bảo, Ngọc đến thư viện đều đặn: An cứ 4 ngày đến thư viện một lần , Bảo 6 ngày một lần, Hà cứ 5 ngày một lần. Lần đầu cả ba bạn cùng đến thư viện một ngày. Hỏi sau ít nhất bao nhiêu ngày thì cả ba bạn lại cùng đến thư viện.

Bài 6: Tìm số học sinh khối 6 của một trường biết rằng số đó là số nhỏ nhất ( khác 0) chia hết cho 60 và 90.

Bài 7: Số học sinh của một trường không quá 600 học sinh. Khi xếp hàng 6, hàng 7 , hàng 8 , hàng 9 thì không thừa một ai. Tính số học sinh của trường đó.

 

docx2 trang | Chia sẻ: anhquan78 | Lượt xem: 997 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Toán học - Bài tập về bội chung, bội chung nhỏ nhất, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
BÀI TẬP VỀ BC, BCNN
Loại 1: Tìm BC, BCNN
Bài 1: Tìm a, BCNN( 8, 1) b, BCNN( 12015, 8,9) 
 c, BCNN( 16,4) d, BCNN( 3, 6, 24) 
 e, BCNN( 3,5, 11) f, BCNN( 8,9,11)
Bài 2: Tìm BCNN sau đó tìm BC
a, 56; 70 và 126 b, 360 và 504 c, 576 và 1080 
d, 252 và 672 e, 35; 70 và 770 f, 28; 20 và 40
Loại 2: Tìm x thông qua tìm BC và BCNN
Bài 1: Tìm số tự nhiên x biết:
 a, x⋮ 48, x ⋮ 36 và x < 500 b, x ⋮ 60, x⋮ 42 và 840 < x < 2500
c, x ⋮ 12 , x ⋮ 25 , x ⋮ 30 và 0 < x < 500 d, ( 18x + 3 ) ⋮ 7
Bài 2: Khi cho học sinh của khối 6 trường THCS Thanh Mai xếp hàng 6, hàng 8 , hàng 10 đều vừa đủ , không thừa bạn nào. Tính số học sinh khối 6 của trường đó biết rằng số học sinh đó trong khoảng từ 200 đến 300 học sinh.
Bài 3: Số học sinh của lớp 6C khi xếp hàng 5, hàng 7 đều không lẻ hàng. Tính số học sinh của lớp 6C biết số học sinh đó trong khoảng từ 30 đến 40 bạn.
Bài 4: Một trường tổ chức cho khoảng 700 đến 800 học sinh đi tham quan. Tính số học sinh của trường đó biết rằng nếu xếp 40 hay 50 học sinh lên một xe thì đều vừa đủ.
Bài 5: Ba bạn An, Bảo, Ngọc đến thư viện đều đặn: An cứ 4 ngày đến thư viện một lần , Bảo 6 ngày một lần, Hà cứ 5 ngày một lần. Lần đầu cả ba bạn cùng đến thư viện một ngày. Hỏi sau ít nhất bao nhiêu ngày thì cả ba bạn lại cùng đến thư viện.
Bài 6: Tìm số học sinh khối 6 của một trường biết rằng số đó là số nhỏ nhất ( khác 0) chia hết cho 60 và 90.
Bài 7: Số học sinh của một trường không quá 600 học sinh. Khi xếp hàng 6, hàng 7 , hàng 8 , hàng 9 thì không thừa một ai. Tính số học sinh của trường đó.
Các bài toán có dư:
Bài 1*: Tìm số tự nhiên nhỏ nhất khi chia cho 7 dư 6, chia cho 6 dư 5, chia cho 5 dư 4, chia cho 4 dư 3, chia cho 3 dư 2, chia cho 2 dư 1.
Bài 2*: Một số tự nhiên khi chia cho 4; 5; 6 đều dư 1. Tìm số đó biết rằng số đó chia hết cho 7 và nhỏ hơn 400.
Bài 3* : Một đơn vị bộ đội khi xếp hàng 20; 25; 30 đều thừa ra 15 người, nhưng khi xếp hàng 41 người thì vừa đủ. Hỏi đơn vị đó có bao nhiêu người? Biết số người < 1000.
Bài 4* : Số học sinh của trường Thanh Cao khi xếp hàng 4 hàng 5 , hàng 6 , hàng 7 đều thiếu 2 em. Tính số học sinh của trường Thanh Cao. Biết số học sinh đó là một số có 3 chữ số và < 500.
Bài 5*: Tìm hai số tự nhiên a và b biết :
a, a.b = 4320 BCNN ( a,b ) = 360
b*, ƯCLN ( a, b ) + BCNN( a, b ) = 58

File đính kèm:

  • docxBT_CHUONG_1.docx
Giáo án liên quan