Đề thi tuyển sinh vào lớp 10 THPT tỉnh Thái Bình năm học 2012 – 2013 môn thi: Toán
Bài 4. (3,5 điểm)
Cho đường tròn (O), dây cung BC (BC không là đường kính). Điểm A di động trên cung nhỏ BC (A khác B và C; độ dài đoạn AB khác AC). Kẻ đường kính AA’ của đường tròn (O), D là chân đường vuông góc kẻ từ A đến BC. Hai điểm E, F lần lượt là chân đường vuông góc kẻ từ B, C đến AA’. Chứng minh rằng:
1) Bốn điểm A, B, D, E cùng nằm trên một đường tròn.
2) BD.AC = AD.A’C.
3) DE vuông góc với AC.
4) Tâm đường tròn ngoại tiếp tam giác DEF là một điểm cố định.
SỞ GIÁO DỤC VÀ ĐÀO TẠO §Ò chÝnh thøc THÁI BÌNH KỲ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2012 – 2013 Môn thi: TOÁN Thời gian làm bài: 120 phút, không kể thời gian giao đề Bài 1. (2,0 điểm) Tính: Cho biểu thức: với x ≥ 0, x ≠ 16. Rút gọn B. Tìm x để giá trị của B là một số nguyên. Bài 2. (2,0 điểm) Cho phương trình: x2 – 4x + m + 1 = 0 (m là tham số). Giải phương trình với m = 2. Tìm m để phương trình có hai nghiệm trái dấu (x1 < 0 < x2). Khi đó nghiệm nào có giá trị tuyệt đối lớn hơn? Bài 3. (2,0 điểm): Trong mặt phẳng toạ độ Oxy cho parabol (P): y = -x2 và đường thẳng (d): y = mx + 2 (m là tham số). Tìm m để (d) cắt (P) tại một điểm duy nhất. Cho hai điểm A(-2; m) và B(1; n). Tìm m, n để A thuộc (P) và B thuộc (d). Gọi H là chân đường vuông góc kẻ từ O đến (d). Tìm m để độ dài đoạn OH lớn nhất. Bài 4. (3,5 điểm) Cho đường tròn (O), dây cung BC (BC không là đường kính). Điểm A di động trên cung nhỏ BC (A khác B và C; độ dài đoạn AB khác AC). Kẻ đường kính AA’ của đường tròn (O), D là chân đường vuông góc kẻ từ A đến BC. Hai điểm E, F lần lượt là chân đường vuông góc kẻ từ B, C đến AA’. Chứng minh rằng: Bốn điểm A, B, D, E cùng nằm trên một đường tròn. BD.AC = AD.A’C. DE vuông góc với AC. Tâm đường tròn ngoại tiếp tam giác DEF là một điểm cố định. Bài 5.(0,5 điểm): Giải hệ phương trình: ĐÁP ÁN Nội dung Điểm 1. (0,5đ) 0,5 2. (1,5đ) a. (1 đ) Với x ≥ 0, x ≠ 16, thì: B 0,25 0,25 0,25 Vậy với x ≥ 0, x ≠ 16. 0,25 b. (0,5 đ) Dễ thấy B ≥ 0 (vì . Lại có: (vì . Suy ra: 0 ≤ B < 3 Þ B Î {0; 1; 2} (vì B Î Z). 0,25 Với B = 0 Þ x = 0; Với B = 1 Þ Với B = 2 Þ Vậy để B Î Z thì x Î {0; 4}. 0,25 Bài 2. Nội dung Điểm 1. (1,0đ) m = 2, phương trình đã cho thành: x2 – 4x + 3 = 0. Phương trình này có a + b + c = 1 – 4 + 3 = 0 nên có hai nghiệm: x1 = 1; x2 = 3. 0,5 Vậy với m = 2 thì phương trình đã cho có hai nghiệm phân biệt: x1 = 1; x2 = 3. 0,5 2. (1,0đ) Phương trình đã cho có hai nghiệm trái dấu Û ac < 0 Û m + 1 < 0 Û m < -1. 0,5 Theo định lí Vi-et, ta có: . Xét hiệu: |x1| - |x2| = -x1 – x2 = -4 < 0 (vì x1 < 0 < x2) Þ |x1| < |x2|. 0,25 Vậy nghiệm x1 có giá trị tuyệt đối nhỏ hơn nghiệm x2. 0,25 Bài 3. (2,0 điểm): Nội dung Điểm 1. (0,75đ) (d) cắt (P) tại một điểm duy nhất Û Phương trình hoành độ của (d) và (P): -x2 = mx + 2 Û x2 + mx + 2 = 0 có nghiệm duy nhất. 0,25 Û D = m2 – 8 = 0 Û m = ± 0,25 Vậy giá trị m cần tìm là m = ± 0,25 2. (0,75đ) 0,5 Vậy m = -4, n = -2. 0,25 3. (0,5đ) - Nếu m = 0 thì (d) thành: y = 2 Þ khoảng cách từ O đến (d) = 2 Þ OH = 2 (Hình 1). 0,25 - Nếu m ≠ 0 thì (d) cắt trục tung tại điểm A(0; 2) và cắt trục hoành tại điểm B( 0) (Hình 2). Þ OA = 2 và OB = . DOAB vuông tại O có OH ^ AB Þ . Vì m2 + 1 > 1 "m ≠ 0 Þ Þ OH < 2. So sánh hai trường hợp, ta có OHmax = 2 Û m = 0. 0,25 Bài 4. (3,5 điểm) Nội dung Điểm 1. (0,5đ) Vì Þ bốn điểm A, B, D, E cùng thuộc đường tròn đường kính AB. 0,5 2. (1,0đ) Xét DADB và DACA’ có: ( vì là góc nội tiếp chắn nửa đường tròn); (hai góc nội tiếp cùng chắn cung AC) Þ DADB ~ DACA’ (g.g) 0,5 Þ Þ BD.AC = AD.A’C (đpcm). 0,5 3. (1,25đ Gọi H là giao điểm của DE với AC. Tứ giác AEDB nội tiếp Þ 0,25 và là hai góc nội tiếp của (O) nên: 0,25 Þ (do AA’ là đường kính) 0,25 Suy ra: Þ DCHD vuông tại H. 0,25 Do đó: DE ^ AC. 4. (0,5đ Gọi I là trung điểm của BC, K là giao điểm của OI với DA’, M là giao điểm của EI với CF, N là điểm đối xứng với D qua I. Ta có: OI ^ BC Þ OI // AD (vì cùng ^ BC) Þ OK // AD. DADA’ có: OA = OA’ (gt), OK // AD Þ KD = KA’. DDNA’ có ID = IN, KD = KA’ Þ IK // NA’; mà IK ^ BC (do OI ^ BC) Þ NA’ ^ BC. Tứ giác BENA’ có nên nội tiếp được đường tròn Þ . Ta lại có: (hai góc nội tiếp cùng chắn cung AB của (O)). Þ Þ NE // AC (vì có hai góc ở vị trí đồng vị bằng nhau). Mà DE ^ AC, nên DE ^ EN (1) Xét DIBE và DICM có: (đối đỉnh) IB = IC (cách dựng) (so le trong, BE // CF (vì cùng ^ AA’)) 0,25 Þ DIBE = DICM (g.c.g) Þ IE = IM DEFM vuông tại F, IE = IM = IF. Tứ giác DENM có IE = IM, ID = IN nên là hình bình hành (2) Từ (1) và (3) suy ra DENM là hình chữ nhật Þ IE = ID = IN = IM Þ ID = IE = IF. Suy ra I là tâm đường tròn ngoại tiếp DDEF. I là trung điểm của BC nên I cố định. Vậy tâm đường tròn ngoại tiếp tam giác DEF là một điểm cố định. 0,25 Bài 5.(0,5 điểm): Nội dung Điểm Từ (2) suy ra x + 2y ≥ 0. Áp dụng bất đẳng thức Bunhiacopxki, ta có: (3) Dấu bằng xảy ra Û x = 2y. Mặt khác, dễ dàng chứng minh được: (4) Thật vậy, (do cả hai vế đều ≥ 0) Û 4(x2 + 2xy + 4y2) ≥ 3(x2 + 4xy + 4y2) Û (x – 2y)2 ≥ 0 (luôn đúng "x, y). Dấu bằng xảy ra Û x = 2y. 0,25 Từ (3) và (4) suy ra: . Dấu bằng xảy ra Û x = 2y. Do đó (2) Û x = 2y ≥ 0 (vì x + 2y ≥ 0). Khi đó, (1) trở thành: x4 – x3 + 3x2 – 2x – 1 = 0 Û (x – 1)(x3 + 3x + 1) = 0 Û x = 1 (vì x3 + 3x + 1 ≥ 1 > 0 "x ≥ 0) Þ Vậy nghiệm của hệ đã cho là (x = 1; y = ). 0,5
File đính kèm:
- Thai Binh 2012.doc