Giáo án Toán đại số lớp 9 - Tiết 51 đến Tiết 58 - Năm học 2018-2019

I. Mục tiêu:

Qua bài này HS cần:

1. Kiến thức:

- Phát biểu được định nghĩa phương trình bậc hai một ẩn, đặc biệt luôn nhớ a  0

- Nhắc lại được phương pháp giải riêng các phương trình bậc hai đặc biệt.

- Vận dụng được kiến thức giải một số ví dụ.

2. Kĩ năng:

- Biến đổi được phương trình dạng tổng quát ax2 + bx + c = 0 về dạng:

 trong các trường hợp a, b, c là những số cụ thể để giải phương trình.

- Thực hiện được một số ví dụ cụ thể.

3. Thái độ:

- Chú ý quan sát, hăng hái phát biểu ý kiến xây dựng bài, mong muốn vận dụng.

4. Định hướng năng lực, phẩm chất

- Năng lực tính toán, giải quyết vấn đề, hợp tác, giao tiếp, tự học.

- Phẩm chất: Tự tin, tự chủ.

 

docx27 trang | Chia sẻ: Khải Trần | Ngày: 24/04/2023 | Lượt xem: 270 | Lượt tải: 0download
Bạn đang xem trước 20 trang mẫu tài liệu Giáo án Toán đại số lớp 9 - Tiết 51 đến Tiết 58 - Năm học 2018-2019, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
, tự học.
- Phẩm chất: Tự tin, tự chủ
 II. Chuẩn bị:
- Gv : Phấn mầu, bảng phụ, thước thẳng
- Hs: Đồ dùng học tập, đọc trước bài.
III. Tiến trình dạy học:
1. Ổn định : (1 phút) 
3.Bài mới :
Hoạt động 1: Khởi động
* GV gọi HS lên bảng làm Ở dưới lớp các em làm vào vở nháp
Giải phương trình: 
 HS: Ta có:
* Hãy biến đổi phương trình bậc hai đầy đủ sau: thành phương trình có vế trái là một bình phương, còn vế phải là một hằng số.
 Ta có: ax2 + bx + c = 0 (a 0)
 ax2 + bx = - c
 x2 + x = - 
 x2+2..x+()2= ()2-
 = (2) 
 GV: Để giải pt bậc hai ta cần có công thức nào ? Chúng ta nghiên cứu bài mới.
Hoạt động 2: Hình thành kiến thức
HOẠT ĐỘNG CỦA GV
HOẠT ĐỘNG CỦA HS
NỘI DUNG
 + Qua kết quả kiểm tra bài cũ của HS 2, hãy cho biết nếu đặt thì ta suy ra được điều gì?
+ Giải thích về và nêu cho HS cách đọc: là chữ cái Hi Lạp, đọc là:”đen ta”
 + Người ta ký hiệu và gọi là biệt thức của phương trình.
 + Xét xem có những trường hợp nào?
+ GV chia lớp thành 4 nhóm, Yêu cầu HS hoạt động nhóm trong 5 phút điền tieepsvaof chỗ (...) của ?1để hoàn thành công thức nghiệm của pt ứng vơí mỗi trường hợp của 
+?Vì sao <0 thì phương trình vô nghiệm. 
+Gv giải thích rõ cho hs trường hợp pt có ngh kép và pt vô ngh.
 Gọi HS nhận xét bài làm của bạn
GV nhận xét và nhấn mạnh về công thức nghiệm của phương trình bậc hai.
Từ đó yêu cầu HS nhận xét chung
? Qua kết quả trên ta thấy yếu tố nào quyết định sự có nghiệm hay vô nghiệm của phương trình ( Dấu của )
 Vậy để giải phương trình bậc hai bằng công thức nghiệm ta cần thực hiện những bước nào?
Cho HS làm ví dụ mẫu
Hướng dẫn HS làm theo từng bước để giải phương trình bậc hai
Cho HS làm ?3/45
 Gọi ba HS lên bảng làm bài
Theo dõi việc làm bài dưới lớp của HS để hướng dẫn HS yếu và trung bình
 Gọi HS nhận xét bài làm của bạn
 ?Nếu a, c trái dấu thì sao?
 ? Khi đó dấu của như thế nào
 ? Vậy có thể nói thêm gì về ngh của pt trong trường hợp ac<0
 Gv giới thiệu chú ý.
+ Ta được: 
Vế trái của pt (3) là số không âm, vế phải có mẫu dương (4a2>0 vì a0) còn tử thức là có thể dương, âm, bằng 0. 
+ HS hoạt động nhóm trong 5 phút sau đó đại diện nhóm trình bày, sau đó nhận xét.
Nếu <0 thì vế trái của phương trình (2) là số không âm còn vế phải là số âm nên phương trình (2) vô nghiệm suy ra phương trình (1) vô nghiệm
HS nhận xét bài làm của bạn
HS nêu nhận xét của mình về nghiệm của phương trình bậc hai
Cho một vài HS đọc to HS có thể không trả lời được 
 Các bước giải phương trình bậc hai một ẩn là:
+ Bước 1: Xác định các hệ số a, b, c
+ Bước 2: Tính D
+Bước 3: Kết luận số ngh của pt dựa vào dấu của D.
+ Bước 4: Tính nghiệm theo công thức nếu pt có ngh.
 HS theo dõi làm ví dụ mẫu
HS cả lớp làm ?3 vào vở của mình 
Ba HS lên bảng làm bài
HS nhận xét bài làm của bạn
Nếu a và c trái dấu thì tích a.c 0, khi đó >0 nên pt có hai nghiệm phân biệt phần nhận xét.
1. Công thức nghiệm
Đối với phương trình:
 ax2 + bx + c = 0 (a 0) (1)
và biệt thức 
(2) (x+)2 = (3)
+ Nếu >0 
 =.
 Do đó phương trình (1) có hai nghiệm x1=; 
x2=
+ Nếu =0=0.
 Do đó phương trình (1) có nghiệm kép =
?2/44. Nếu <0 pt vô nghiệm
Kết luận chung: SGK/44
2. Áp dụng
Ví dụ: Giải phương trình: 
 3x2+5x+2=0
Hệ số: a=3; b=5; c= 2
=52–4.3.2=1
Do >0 nên phương trình có hai nghiệm: 
x1==–1; 
x2==
?3/45 
a/ Hệ số: a=5; b= –1; c=2
 =(–1)2–4.5.2= –39<0
Vậy phương trình vô nghiệm
b/ Hệ số: a=4; b= –4; c=1
 =(–4)2–4.4.1=0
P.trình có nghiệm kép: x=1/2
c/ Hệ số: a= –3; b=1; c=5
=12–4.(–3).5=0
Vậy phương trình có 2 ngh:
 x1=; x2=
Chú ý: Xem SGK/445
Hoạt động 3: Luyện tập
Mục tiêu: HS vận dụng thành thạo công thức nghiệm giải pt bậc hai
PP: Hoạt động nhóm, thuyết trình
 Làm bài tập 16 a,b,c,d: (1 nửa lớp làm câu a,c; 1 nửa lớp làm câu c,d)
 Dùng công thức nghiệm để giải các pt sau:
 HS hoạt động nhóm, trình bày ra giấy, 2 nhóm ghi KQ vào bảng phụ
GV yêu cầu đại diện nhóm trình bày kết quả.
HS quan sát, nhận xét
	Hoạt động 4: Vận dụng
 Cho pt: (1)
Giải pt với m = -1
Tìm m để pt có nghiệm kép? pt có hai nghiệm phân biệt?
Hoạt động 5: Tìm tòi, mở rộng
Bài tập về nhà: 15,16/45 SGK và bài 15, 16, 20, 21 SBT.
Đọc phần có thể em chưa biết và bài đọc thêm trong SGK/46,47
Học thuộc công thức nghiệm của phương trình bậc hai
Ngày soạn:  
Ngày dạy: . 
Tiết 54: LUYỆN TẬP
I. Mục tiêu:
Qua bài này HS cần:
1. Kiến thức:
- Vận dụng thành thạo công thức nghiệm tổng quát vào giải phương trình bậc 2 . 
- Giải các pt bậc hai và chú ý về các điều kiện của D để phương trình bậc 2 một ẩn vô nghiệm, có nghiệm kép, có 2 nghiệm phân biệt. 
- Linh hoạt với các trường hợp phương trình bậc 2 đặc biệt không cần dùng đến công thức tổng quát.ỵ
2. Kĩ năng:
- Thực hiện được việc giải các pt bậc hai và chú ý về các điều kiện của D để phương trình bậc 2 một ẩn vô nghiệm, có nghiệm kép, có 2 nghiệm phân biệt. 
3. Thái độ:
- Nghiêm túc và hứng thú học tập.
4. Định hướng năng lực
- Năng lực tính toán, giải quyết vấn đề, hợp tác, giao tiếp, tự học.
 II. Chuẩn bị:
- Gv : Phấn mầu, bảng phụ, thước thẳng
- Hs: Đồ dùng học tập, đọc trước bài.
III. Tiến trình dạy học:
1. Ổn định : (1 phút) 
2..Bài mới :
HOẠT ĐỘNG CỦA GV
HOẠT ĐỘNG CỦA HS
NỘI DUNG
Hoạt động 1: Khởi động – 8p
Mục tiêu: HS ghi nhớ công thức nghiệm pt bậc hai
PP: vấn đáp, thuyết trình
1, Điền vào chỗ .... để được kết luận đúng (câu hỏi được treo trên bảng phụ)
2, Giải phương trình bằng cách sử dụng công thức nghiệm tổng quát
 Chốt lại và cho điểm
2 Hs lên bảng kiểm tra
Học sinh dưới lớp theo dõi, nhận xét bài làm của 2 bạn
1, Điền vào chỗ .... để được kết luận đúng
Đối với p. trình (a 0) 
- Nếu D... thì p.trình có 2 ngh phân biệt: x1 = ....... : x2 = ........
- Nếu D.... thì phương trình có nghiệm kép: x1 = x2 = ............
- Nếu D .... thì p.trình vô nghiệm
2, Kết quả: D= 0; x1=x2= 
Hoạt động 2: Luyện tập -33p
Mục tiêu: Vận dụng được kiến thức đã học giải các dạng bài tập có liên quan.
Kĩ thuật sử dụng: Giao nhiệm vụ, động não, hoàn tất một nhiệm vụ, chia nhóm.
Gv nêu yêu cầu bài tập
Giải các phương trình sau 
 ? ở câu b còn có cách giải nào khác không
 Gv lưu ý HS khi giải cần xem pt có gì đặc biệt không, nếu không ta mới áp dụng công thức ngiệm để giải pt
 ? ở câu c hãy nhân hai vế với (-1) để hệ số a >0 rồi giải và so sánh với cách giải khi a < 0
Gv y/c hs giải bài 2 theo 2 cách: Dùng công thức nghiệm và biến đổi về pt tích để so sánh 2 cách giải
Bài 3: (gv treo bảng phụ ghi đề bài)
Tìm m để phương trình sau có ngh, vô nghiệm
a, mx2+(2m-1)x+m+2=0
b, 2x2-(4m+3)x+2m2-1=0
 Gv y/c hs hoạt động nhóm
 Gv lưu ý hs đk ở câu a 
? Phương tình có nghiệm khi nào? vô ngh khi nào?
Bài 22
Vẽ đồ thị hàm số
y = 2x2
y = - x + 3
Hãy tìm tọa độ mỗi giao điểm của hai đồ thị?
? Hãy giải thích vì sao x1=-1,5 là nghiệm của phương trình (1)
Tương tự hãy giải thích vì sao x2 = 1 là nghiệm của phương trình (1)
Hãy giải phương trình bằng công thức nghiệm? So sánh kết quả của câu b
(Hoạt động cá nhân)
3 hs lên bảng thực hiện
Cả lớp làm vào vở
Hsinh: b lần lượt trả lời các câu hỏi của giáo viên
Hs làm theo yêu cầu cầu của gv
Hai học sinh lên bảng thực hiên theo hai cách, hai nửa lớp cùng làm
(Hoạt động nhóm)
Hs hoạt động nhóm sau 5 phút, các nhóm báo cáo kết quả ở bảng phụ nhóm
Hai học sinh lên bảng lập bảng toạ độ điểm rồi vẽ đồ thị 2 hàm số y=2x2 và
 y=-x+3
 -2 -1,5–1 O 1 2 3
8
4,5
3
2
x
y
A
B
y= - x+3
y= 2x2
x1= -1,5 là nghiệm của phương trình (1) vì:
2.(-1,5)2 +(-1,5)–3 = 0
Học sinh giải thích tương tự
Một học sinh lên bảng thực hiện
2x2 + x –3 =0 (1)
D = 25 > 0 do đó phương trình có hai nghiệm phân biệt
x1 = 1; x2= - 1,5
Dạng 1:
 Giải phương trình bằng công thức nghiệm
Bài 1: 
a, a=2; b==-7; c=3
 D== 
phương trình có 2 ngh phân biệt 
b, D=0x1=x2=4
c, D=121>0x1=1; x2=-5/6
Bài 2: Giải phương trình 
 (1) theo hai cách
C1, Dùng công thức nghiệm
(1)
a=2/5; b=7/3; c=0
D=>0
Phương tình có 2 ngh phân biệt 
 x1=0; x2=-35/6
C2, Đưa về pt tích
 (1)
Bài 3:
a) ĐK: 
D=-12m+1
Phương trình có nghiệm: 
D0m
Vậy với ; m thì pt có nghiệm:
D thì pt vô nghiệm
b) D = (m+1)2+48>0
 Vì D>0 với mọi giá trị của m do đó pt (2) luôn có ng với mọi giá trị của m.
Dạng 2: Giải phương trình bậc hai bằng phương pháp đồ thị
Bài 22 Giải pt 2x2+x+3=0 (1) bằng đồ thị và bằng công thức nghiệm
x
-2,5
-2
-1
0
1
2
2,5
Y=2x2
12,5
8
1
0
2
8
12,5
x
0
3
Y=-x+3
3
0
Hai đồ thị cắt nhau tại A( - 1,5; 4,5) 
và B(1;2)
x1 = 1; x2= - 1,5
Hoạt động 3: Tìm tòi, mở rộng – 2p
Mục tiêu: - HS chủ động làm các bài tập về nhà để củng cố kiến thức đã học.
 - HS chuẩn bị bài mới giúp tiếp thu kiến thức sẽ học trong buổi sau.
Kĩ thuật sử dụng: Viết tích cực
- Đọc lại bài và học bài, xem và làm lại các dạng bài tập đã giải.
 - Làm BT 21, 23, 24 trang 38 SBT.
Bài mới 
- Xem trước §5.Công Thức Nghiệm Thu Gọn
Ngày soạn:  
Ngày dạy: . 
Tiết 55: CÔNG THỨC NGHIỆM THU GỌN
I. Mục tiêu:
Qua bài này HS cần:
1. Kiến thức:
- Xác định được b' khi cần thiết và nhớ công thức nghiệm thu gọn '
- Vận dụng tốt công thức nghiệm thu gọn, sử dụng triệt để công thức này trong mọi trường hợp có thể để làm cho việc tính toán giản đơn hơn 
- Vận dụng được công thức nghiệm của phương trình bậc hai để giải thành thạo phương trình bậc hai.
- Thấy được lợi ích của của công thức nghiệm thu gọn. 
2. Kĩ năng:
- Thực hiện được việc sử dụng công thức nghiệm thu gọn. 
- Tính được nghiệm của phương trình bậc hai.
3. Thái độ:
Chú ý quan sát, hăng hái phát biểu ý kiến xây dựng bài, mong muốn vận dụng.
4. Định hướng năng lực, phẩm chất
- Năng lực tính toán, giải quyết vấn đề, hợp tác, giao tiếp, tự học.
- Phẩm chất: Tự tin, tự chủ
 II. Chuẩn bị:
- Gv : Phấn mầu, bảng phụ, thước thẳng
- Hs: Đồ dùng học tập, đọc trước bài.
III. Tiến trình dạy học:
1. Ổn định : (1 phút) 
2.Kiểm tra bài cũ : (Kết hợp trong bài). 
3.Bài mới : 
HOẠT ĐỘNG CỦA GV
HOẠT ĐỘNG CỦA HS
NỘI DUNG
Hoạt động 1: Khởi động – 8p
Nêu yêu cầu kiểm tra
- Giải phương trình bằng cách dùng công thức nghiệm 
- Hãy giải phương trình sau bằng cách dùng công thức nghiệm:
3x2 - 4x- 4 = 0
GV nhận xét bài làm của hs và cho điểm
GV: Có thể giải pt bậc hai theo công thức đơn giản hơn hay không? Chúng ta nghiên cứu bài mới
Hai học sinh lên bảng thực hiện
Học sinh 1 giải phương trình:
3x2 + 8x + 4 = 0
Học sinh 2 giải phương trình:
3x2 - 4x- 4 = 0
Hai học sinh nhận xét bài làm của hai bạn
Kết quả của học sinh 1
x1 = - 2/3 ; x2 = - 2 
Kết quả của học sinh 2
Hoạt động 2: Hình thành kiến thức – 23p
Mục tiêu: Tính được ’, qua đó xác định được công thức nghiệm thu gọn.
Kĩ thuật sử dụng: Chia nhóm, giao nhiệm vụ, hoàn tất một nhiệm vụ, động não.
Đặt vấn đề: Đối với pt
ax2 + bx + c = 0 (a 0) trong nhiều trường hợp nếu ta đặt b = 2b’ rồi áp dụng công thức nghiệm thì việc giải phương trình bằng công thức nghiệm sẽ đơn giản hơn 
Cho phương trình (Viết lên bảng)
Căn cứ vào công thức nghiệm đã học b = 2b’ và D= 4D’ hãy tìm nghiệm của phương trinh bậc hai (nếu có) với trường hợp D’ > 0; D’ < 0; D’ = 0 
 Sau khi học sinh hoạt động nhóm xong giáo viên treo bảng nhóm lên bảng và cho học sinh nhận xét bài làm của các nhóm
Sau đó treo bảng phụ hai bảng công thức nghiệm yêu cầu hs so sánh các công thức tương ứng để ghi nhớ
Áp dụng: Sử dụng công thức nghiệm thu gọn để giải pt
ở phần bài cũ và so sánh 2 cách giải
Học sinh hoạt động nhóm bằng cách điền vào chỗ trống để được kết quả đúng
Nếu D’ > 0 thì D> ....
 = ... 
phương trình có ..........
;x2=... ; x2=..
x1= ; x2=
Nếu D’ = 0 thì D = ...
Phương trình có ....
x1= x2 = 
Nếu D’< 0 thì D< ...
Phương trình ...
2 hs lên bảng giải 2 trường hợp
1.Công thức nghiệm thu gọn:
Cho phương trình 
ax2+bx+c=0 (a0) có b = 2b’
ta có D = b2 – 4ac = (2b’)2 – 4ac
 = 4b’2 – 4ac= 4(b’2 – ac)
Ta đặt b’2 – ac = D’
Vậy D= 4D’
Nếu D’ > 0 thì D> 0
 = 2 phương trình có 2 nghiệm phân biệt
x1 = ; x2=
Nếu D’ = 0 thì D = 0
 Phương trình có nghiệm kép
x1= x2 = 
Nếu D’< 0 thì D< 0
Phương trình vô nghiệm.
Hoạt động 3,4: Luyện tập, vận dụng – 11p
Mục tiêu: Vận dụng được kiến thức đã học trả lời các ? và làm bài tập
Kĩ thuật sử dụng: hoàn thành nhiệm vụ, động não
Cho học sinh làm ? 2 SGK Giải phương trình:
5x2 + 4x – 1 = 0
bằng cách điền vào chỗ trống (đề bài trên bảng phụ)
Hướng dẫn học sinh giải lại pt ở phần bài cũ
Gọi học sinh lên bảng làm ?3
Giải phương trình
a) 3x2 + 8x + 4 = 0
b) 7x2 – 6x + 2 = 0
 ? Vậy khi nào ta dùng công thức nghiệm thu gọn
Cho hs làm bài tập 18 SGK: Đưa các pt sau về dạng ax2+2b’x+c=0 rồi giải phương trình.
(Hs hoạt động cá nhân)
Học sinh làm ?2 
Một học sinh lên bảng thực hiện
Học sinh dưới lớp làm vào vở
Học sinh so sánh hai cách giải để thấy được cách giải công thức nghiệm thu gọn thuận lợi hơn
2 học sinh lên bảng thực hiện, học sinh dưới lớp làm vào vở
Học sinh nhận xét bài làm của hai bạn
 (Hs hoạt động nhóm)
 Ta nên dùng công thức nghiệm thu gọn khi phương trình bậc hai có b là số chẵn hoặc là bội chẵn của một căn, một biểu thức
 Hs hoạt động nhóm làm bài tập, 2 nửa lớp làm 2 bài, các nhóm báo cáo kết quả và nhận xét
?2 Giải pt: 5x2 + 4x – 1 = 0
a = 5; b’ = 2; c = - 1
D’ = 4 + 5 = 9; = 3
nghiệm của phương trình là:
x1 = 1/5; x2 = - 1
Giải phương trình;
 3x2 - 4x- 4 = 0
Kết quả câu a:
x1 = - 2/3; x2 = - 2
Kết quả câu b:
x1 = x2 = 
Bài tập 18/ SGK
a) 3x2-2x=x2+32x2-2x-3=0
a=2; b’=-1; c=-3
D’=7>0=
x1=
b) (2x - )2 – 1 = (x + 1)(x – 1)
3x2 – 4x + 2 = 0
a = 3; b’ = - 2; c = 2
D’ = 8 – 6 = 2; 
Phương trình có hai nghiệm
x1 = ; x2 = /3
Hoạt động 5: Tìm tòi, mở rộng – 2p
Mục tiêu: - HS chủ động làm các bài tập về nhà để củng cố kiến thức đã học.
 - HS chuẩn bị bài mới giúp tiếp thu kiến thức sẽ học trong buổi sau.
Kĩ thuật sử dụng: Viết tích cực.
- Nắm chắc công thức nghiệm thu gọn
- Làm các bài tập 17, 18 cd, 19 SGK và bài tập 27, 30 SBT.Gv hướng dẫn bài 19-sgk
Ngày soạn:  
Ngày dạy: . 
Tiết 56: LUYỆN TẬP
I. Mục tiêu:
Qua bài này HS cần:
1. Kiến thức:
- Vận dụng thành thạo công thức nghiệm và công thức nghiệm thu gọn để giải phương trình bậc 2 . 
- Nhận biết số nghiệm của phương trình mà không cần giải. 
2. Kĩ năng:
- Biết giải phương trình bậc hai với hệ số hằng và phương trình bậc hai có chứa tham số.
3. Thái độ:
- Nghiêm túc và hứng thú học tập.
4. Định hướng năng lực, phẩm chất
- Năng lực tính toán, giải quyết vấn đề, hợp tác, giao tiếp, tự học.
- Phẩm chất: Tự tin, tự chủ.
 II. Chuẩn bị:
- Gv : Phấn mầu, bảng phụ, thước thẳng
- Hs: Đồ dùng học tập, đọc trước bài.
III. Tiến trình dạy học:
1. Ổn định : (1 phút) 
2..Bài mới :
HOẠT ĐỘNG CỦA GV
HOẠT ĐỘNG CỦA HS
NỘI DUNG
Hoạt động 1: Khởi động – 10p
Mục tiêu: HS nhắc lại được công thức nghiệm thu gọn của phương trình bậc hai một ẩn, tìm được lỗi sai (nếu có) trong bài lam của bạn.
Kĩ thuật sử dụng: Giao nhiệm vụ, hoàn tất một nhiệm vụ, động não, đặt câu hỏi.
1/ Nêu công thức nghiệm thu gọn của phương trình bậc hai trong trường hợp b=2b’
2/ Chữa bài tập 17c: Hãy dùng công thức nghiệm thu gọn để giải pt sau;
c) 5x2 – 6x + 1 = 0
 2 học sinh lên bảng kiểm tra
 Học sinh dưới lớp theo dõi, nhận xét bài làm của bạn
c) 5x2 – 6x + 1 = 0
a = 5; b’ = - 3; c = 1
= 9 – 5 = 4 > 0 = 2
phương trình có hai nghiệm phân biệt
x1 = 
x2 = 
Hoạt động 2: Luyện tập – 32p
Mục tiêu: Vận dụng được kiến thức đã học giải các dạng bài tập có liên quan.
Kĩ thuật sử dụng: Giao nhiệm vụ, hoàn tất một nhiệm vụ.
Gv cho hs so sánh cách sử dụng công thức nghiệm hoặc không ở câu a; b; c để rút ra cách giải gọn hơn: (Đưa về pt tích, hoặc dùng cách giải riêng)
- Giới thiệu đây là phương trình An Khô - va -ri - zmi
Gọi 2HS đứng tại chỗ trả lời miệng
Gv treo bảng phụ ghi đề bài: 
Yêu cầu hs hoạt động nhóm 
 Cho pt với ẩn là x
x2 – 2(m – 1)x + m2 = 0
- Hãy tính ’ ?
 ? Phương trình có hai nghiệm phân biệt khi nào?
 ? Phương trình có nghiệm kép khi nào?
- Phương trình vô nghiệm khi nào?
Bổ sung: Với giá trị nào của m thì pt trên có 1 nghiệm x=-2
4 học sinh lên giải phương trình mỗi em giải một câu
 Hs nhận xét bài làm của bạn
(Hs hoạt động cá nhân)
Hai học sinh lên bảng thực hiện
(Hs hoạt động cá nhân)
Học sinh trả lời miệng
a) Có a = 15 > 0
c = - 2005 < 0 
a.c < 0 nên phương trình có hai nghiệm phân biệt
b) Giải thích tương tự
Hs thảo luận tại chỗ, sau đó báo cáo kết quả theo nhóm
Học sinh hoạt động theo nhóm
Các nhóm treo bài lên bảng và kiểm tra lẫn nhau
Một học sinh đứng tại chỗ trả lời:
- Phương trình có hai nghiệm phân biệt khi ’ > 0
- Phương trình có nghiệm kép khi 
D’ = 0
- Phương trình vô nghiệm khi D’ < 0
 1 hs lên bảng thực hiện
Dạng 1: Giải phương trình 
Bài tập20 SGK: 
a) 25x2 – 16 = 0 ( x1=4/5; x2=-4/5)
b) 2x2 + 3 = 0 ( pt vô nghiệm)
c) 4,2x2 + 5,46x = 0 (x1=0; x2=-1,3)
d) 4x2 – 2 = 1 - 
 (x1=1/2; x2=)
Bài tập21 SGK: 
a) x2 = 12x + 288
 Kq: x1=24; x2=-12
b) 
Kq: 
 x1=12; x2=-19
Dạng 2: Không giải phương trình xét số nghiệm của nó
Bài 22 SGK
a) 15x2 + 4x – 2005 = 0
b) 
Dạng 3: Bài toán thực tế
Bài 23 SGK:
a) t = 5 phút 
v = 352 – 30.5 + 135
 = 60 km/h
b) v= 120 km/h
120 = 3t2 – 30t + 135
3t2 – 30t + 15 = 0
D’= 25 – 5 =20 > 0 
 = 2
Phương trình có 2 nghiệm phân biệt
Dạng 4: Tìm điều kiện để phương trình có nghiệm, vô nghiệm
Bài 24 SGK:
Ta có: a = 1; b’ = - (m – 1); 
c = m2 D’= (m – 1)2 – m2
 = 1 – 2m
b )Phương trình có hai nghiệm phân biệt khi D’ > 0 
1 – 2m > 0 m < 
+P.trình có nghiệm kép khi D’ = 0 
1 – 2m = 0 m = 
+ Phương trình vô nghiệm khi 
D’ < 0 
1 – 2m 
c) Thay x=-2 vào pt ta có: 
4+4m-4+m2=0
m2+4m=0
Hoạt động 3: Tìm tòi, mở rộng – 2p
Mục tiêu: - HS chủ động làm các bài tập về nhà để củng cố kiến thức đã học.
 - HS chuẩn bị bài mới giúp tiếp thu kiến thức sẽ học trong buổi sau.
Kĩ thuật sử dụng: Kĩ thuật trình bày một phút, viết tích cực
Học thuộc công thức nghiệm thu gọn, công thức nghiệm tổng quát, nhận xét sự khác nhau
- Làm các bài tập 29 đến 43 SBT
Bài mới 
- Chuẩn bị trước bài « Hệ thức Vi- et và ứng dụng »
 -
Ngày soạn:  
Ngày dạy: . 
Tiết 57: HỆ THỨC VI – ÉT VÀ ỨNG DỤNG
I. Mục tiêu:
Qua bài này HS cần:
1. Kiến thức:
Phát biểu được hệ thức Vi-ét. Biết cách biểu diễn tổng các bình phương, các lập phương của hai nghiệm qua các hệ số của phương trình.
Vận dụng được những ứng dụng của hệ thức Vi-ét để:
Nhẩm nghiệm của phương trình bậc hai trong các trường hợp a + b + c = 0;
 a - b + c = 0 hoặc các trường hợp mà tổng và tích của hai nghiệm là những số nguyên với giá trị tuyệt đối không lớn lắm.
Tìm được hai số biết tổng và tích của chúng.
2. Kĩ năng:
- Tính được hệ thức Vi- ét, thực hiện được việc nhẩm nghiệm của phương trình bậc hai trong trường hợp đặc biệt.
3. Thái độ:
Chú ý lắng nghe, hăng hái phát biểu ý kiến xây dựng bài
4. Định hướng năng lực, phẩm chất
- Năng lực tính toán, giải quyết vấn đề, hợp tác, giao tiếp, tự học.
- Phẩm chất: Tự tin, tự chủ.
 II. Chuẩn bị:
- Gv : Phấn mầu, bảng phụ, thước thẳng
- Hs: Đồ dùng học tập, đọc trước bài.
III. Tiến trình dạy học:
1. Ổn định : (1 phút) 
2. Bài mới
HOẠT ĐỘNG CỦA GV
HOẠT ĐỘNG CỦA HS
NỘI DUNG
Hoạt động 1: Khởi động:
Cho phương trình
a.x2 + bx + c = 0(a0)
Hãy tính x1 + x2 ?
 x1.x2 ?
Trường hợp D > 0
Trường hợp D = 0
Giáo viên nhận xét và cho điểm hai học sinh.
ĐVĐ: Chúng ta đã biết công thức nghiệm của phương trình bậc hai. Bây giờ ta hãy tìm hiểu sâu hơn nữa mối liên hệ giữa hai nghiệm này với các hệ số của phương trình.
Hai học sinh lên bảng thực hiện. Học sinh 1 làm câu a, học sinh 2 làm câu b.
Cả lớp làm vào vở.
Học sinh dưới lớp nhận xét bài làm của bạn.
a) Khi D>0: P.trình có 2 nghiệm phân biệt x1=; x2=
x1+x2==
x1. x2==
b) Khi D=0: Phương trình có nghiệm kép x1=x2=
 x1+x2=; x1. x2= 
Hoạt động 2: Hình thành kiến thức
Mục tiêu: Phát biểu được định lí Vi- ét, vận dụng được định lí vào ví dụ đơn giản.
Kĩ thuật sử dụng: Giao nhiệm vụ, đọc hợp tác, hoàn tất một nhiệm vụ, chia nhóm.
Qua phần bài cũ em nào có phát hiện gì về mối liên hệ giữa hai nghiệm và các hệ số

File đính kèm:

  • docxgiao_an_toan_dai_so_lop_9_tiet_51_den_tiet_58_nam_hoc_2018_2.docx