Chuyên đề Giải toán trên máy tính cầm tay - Lê Thiện Đức

a/. Một người gửi tiết kiệm 60 000 000 (đồng) loại kỳ hạn 2 tháng vào ngân hàng với lãi suất 14% một năm; Biết rằng mức lãi suất không tự động ký thác . Hỏi sau 2 tháng , người đó nhận được bao nhiêu tiền cả vốn lẫn lãi?

b/. Một người gửi tiết kiệm 250.000.000 (đồng) loại kỳ hạn 3 tháng vào ngân hàng với lãi suất 10,45% một năm. Biết rằng mức lãi suất được duy trì sau khi đến đáo han và người đó không rút lãi ở tất cả các định kỳ trước đó. Hỏi sau 10 năm 9 tháng , người đó nhận được bao nhiêu tiền cả vốn lẫn lãi?

 

doc27 trang | Chia sẻ: hoanphung96 | Lượt xem: 965 | Lượt tải: 0download
Bạn đang xem trước 20 trang mẫu tài liệu Chuyên đề Giải toán trên máy tính cầm tay - Lê Thiện Đức, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
MS; 500ES; 570ES) Tìm tỉ số lượng giác biết góc nhọn cho trước và Tìm số đo góc nhọn biết tỉ số lượng giác kết hợp định nghĩa tỉ số lượng giác,...: Làm các bài tập tính cạnh và tính góc trong tam giác vuông và diện tích các hình:
Bài 1/ Sắp xếp các tỉ số lượng giác sau theo thứ tự tăng dần 
Sin 700 , Cos 500 , Sin 450 , Cos 320, Sin 800 ,tan320	, cot320
Bài 2/ Cho vuông tại A, có AH là đường cao, và HC = 4cm, HB = 9cm
a/ Tính BC;AB; AC? ( Lấy 2 số thập phân)
b/ Tính ; và AH ? 
c/ So sánh sinB và sinC ; TanB và sinC; tanB và cotC; cosB và cosC;tanB và cosC ?
Bài 3/ Cho tam giác ABC có AB=1,5cm;AC=2cm;BC=2,5cm và AH là đường cao.
a/ Chứng minh ABC là tam giác vuông.
b/ Tính và HB, HC ? 
c/ Tìm tỉ số lượng giác của ? 
Bài 4/Cho Cotx = 3,163. Tính Sinx, cosx?
 óBiến đổi: Cotx = 3,163	 
	Tan x = 	
	Sin=0,301
	Cos=0,953
	Đáp số: Sin=0,301
	 Cos=0,953 
Bài 5/Cho tam giác ABC vuông tại A,có AB = 21cm; =400,BD là phân giác . 
Hãy tính: AC; BC; ;BD?
40
21
1
A
C
B
D
óBiến đổi: 
+ AC = AB. CotC=21.Cotg40021.1,191825,027cm 
+ SinC = cm 
+ Phân giác BD có =400
+Xét tam giác vuông ABD có: 
CosB1=BD=(cm) 
	Đáp số: AC = 25,027cm
	 BC = 32,670cm
	 =250
	 BD = 23,171cm 
A
H
C
B
Bài 6/Cho tam giác nhọn ABC có độ dài các cạnh AB = 32,25cm; AC = 35,75cm; số đo . Tính diện tích của , Độ dài cạnh BC, số đo 
HD:
Vẽ và xét :
=515,727
	+Tính 
Bài 7/Cho vuông tại A, AM là trung tuyến, AH là đường cao, biết AC = 12cm, AM = 10cm, Tính 
	HD:
BC = 2.AM = 20cm
Bài 8/ Tính A = 
 ( sin 150” 170”290” + cos240” 320”110” ) cos510”390”130” =
Kết quả :1,891358657. 
Bài 9/Cho vuông tại A, AM là trung tuyến, AH là đường cao, biết AC = 12cm, AM = 10cm, Tính 
	Hướng Dẫn:
BC = 2.AM = 20cm
A
B
H
K
C
Bài 10/ Cho đều có cạnh bằng 12,5cm và AH là đường cao. Gọi K là trung điểm của HC.
a (2đ)/ Tính độ dài AK ?
b(2đ)/ Tính  ?
a /+ HC = 6,25cm (T/c đều)
+ 10,82531755cm (đlí PytaGo)
+ HK = HC :2 = 3.125cm
+ (đlí PytaGo)
b(2đ)/ Tính  ?
 Bài 11: Tính diện tích hình thang có độ dài hai đáy bằng 10 cm và 19 cm .Các góc kề đáy lớn bằng 450 và 300 .
Đặt AH = BK = x 
Ta có DH = x 
C
K
H
D
A
B
 KC = x 
Ta có DH + HK +KC = DC 
 x + 10 + x =19
 x = 
SABCD = 
Bài 12: Cho tam giác, trong đó BC = 11cm, . Gọi N là chân của đường vuông góc kẽ từ A đến cạnh BC. Tính AN, AC?
óBiến đổi:
Từ B kẽ đường thẳng vuông góc với AC : BKAC
Xét BCK (=900) . Có =300 
BK = BC SinC
BK = 11.Sin300 =5,5 (cm)	
Có =600–380=220 
Trong BKA có AB=5,933 
AN=AB.Sin380 5,933.Sin3803,653(cm)	
Trong ANC có AC=7,306	
 ................................................................................................................................................
B- PHẦN ĐẠI SỐ
I/ DẠNG TÌM ƯCLN VÀ BCNN:
1/ Rút gọn phân só tối giản: 
Ví dụ: 
2/ ƯCLN(A;B)=?
+ Rút gọn phân só tối giản: 
+ƯCLN(A;B) = A:a
3/ BCNN(A;B)=?
+ Rút gọn phân só tối giản: 
+ BCNN(A;B) = A x b
Bài tập: Tìm ƯCLN và BCNN của 3600 ; 1926 ; 5728 ?
 1926 : 107 = 18 
 Vậy ƯCLN ( 1926; 3600) = 18	
Vì ƯCLN ( 1926; 3600 ; 5728 ) = ƯCLN(ƯCLN ( 1926; 3600) ; 5728)) 
 18 : 9 = 2 
 VậyƯCLN ( 1926; 3600 ; 5728 )=2	
 * 
 1926 200 = 385200
 BCNN( 1926 ; 3600) = 385200	
 BCNN( 1926 ; 3600 ; 5728 ) = BCNN(BCNN( 1926 ; 3600); 5728)) 
 5728 24075 = 137901600
 Vậy BCNN( 1926 ; 3600 ; 5728 ) = 137901600
II/ DẠNG TĂNG TƯỞNG PHẦN TRĂM:
Gọi a là số tiền gửi ban đầu, r là lãi suất một kỳ hạn và n là số kỳ hạn thì số tiền cả vốn lẫn lãi sau n kỳ hạn là : A = a(1+r)n 
Bài1:
a/. Một người gửi tiết kiệm 60 000 000 (đồng) loại kỳ hạn 2 tháng vào ngân hàng với lãi suất 14% một năm; Biết rằng mức lãi suất không tự động ký thác . Hỏi sau 2 tháng , người đó nhận được bao nhiêu tiền cả vốn lẫn lãi? 
b/. Một người gửi tiết kiệm 250.000.000 (đồng) loại kỳ hạn 3 tháng vào ngân hàng với lãi suất 10,45% một năm. Biết rằng mức lãi suất được duy trì sau khi đến đáo han và người đó không rút lãi ở tất cả các định kỳ trước đó. Hỏi sau 10 năm 9 tháng , người đó nhận được bao nhiêu tiền cả vốn lẫn lãi?
Giải: 
a/. 	+ Số tiền nhận được sau 2 tháng là : 
	 đồng
b/. + Lãi suất một kỳ hạn 3 tháng là .3 = 2,6125% 
+ 10 năm 9 tháng = 129 tháng = 43 kỳ hạn 
 	+ Số tiền nhận được sau 10 năm 9 tháng là : 
 A = 250 000 00043 = 757 794 696,8 đ 
Bài 2 : Vào ngày 01/01/2012 Bác Phúc gửi tiết kiệm 100 000 000 (đồng) loại kỳ hạn 1 tháng vào ngân hàng với lãi suất 14% một năm; Hỏi đến ngày 01/02/2013 bác Phúc nhận được bao nhiêu tiền cả vốn lẫn lãi? Biết rằng Ngân hàng nhà nước ra quyết định toàn hệ thống ngân hàng từ ngày 01/04/2012 phải hạ lãi suất còn một năm và từ ngày 01/07/2012 phải hạ lãi suất còn một năm cho các loại tiền gửi có kỳ hạn và bác Phúc không rút lãi ở tất cả các định kỳ trước đó.
 Giải :
 + Gọi a là số tiền gửi ban đầu, r là lãi suất một kỳ hạn và n là số kỳ hạn thì số tiền cả vốn lẫn lãi sau n kỳ hạn là : A = a(1+r)n 
+Từ ngày 01/01/2012 đến ngày 01/04//2012 (3 tháng) được hưởng 14% một năm :
 + Lãi suất một kỳ hạn 1 tháng là 
 + Số tiền lãi và gốc sau 3 tháng là: A = 100 000 000 = 103 540 992,1đ 
+Từ ngày 01/04/2012 đến ngày 01/07//2012 (3 tháng) được hưởng 12% một năm :
 + Lãi suất một kỳ hạn 1 tháng là 
 + Số tiền lãi và gốc sau 3 tháng là : A = 103 540 992 = 106 678 387,6đ 
+Từ ngày 01/07/2012 đến ngày 01/02/2013 (7 tháng) được hưởng 9% một năm :
 + Lãi suất một kỳ hạn 1 tháng là 
 +Số tiền lãi và gốc sau 7 tháng là : A = 106 678 387,6 = 112 406 603,8đ 
 Vậy đến ngày 01/02/2013 bác Phúc nhận được 112 406 603,8 đồng 
Bài 3 : Một người gửi vào ngân hàng 30 000 000 đồng duy trì theo kỳ hạn 1 tháng, đến 9 tháng sau người ấy nhận cả gốc lẫn lãi ( Theo hóa đơn) là 33 301 072,52 đồng. Hỏi lãi xuất gửi tiết kiệm của ngân hàng này theo kỳ hạn 1 tháng là mấy một tháng?
HD: Theo công thức tăng trưởng :
	 . Trong đó: A là số tiền nhận cả gốc lẫn lãi
	a là tiền gửi.
	n là số tháng
	m là lãi suất
Vậy lãi suất của ngân hàng này theo kỳ hạn 1 tháng là: một tháng.
Bài 4 : Dân số một quốc gia (Y) là 65 triệu người, mức tăng dân số trong một năm bình quân là 0,9%.
a) Viết công thức tính dân số sau n năm.
b) Tính dân số của quốc gia (Y) sau 15 năm.
Giải: a) Công thức tổng quát tính dân số nước ấy sau n năm là: A = a(1+m)n
	Trong đó a là số dân ban đầu khi bắt đầu tính
	 m là mức tăng dân số trung bìmh trong một năm
	 n là số năm 
	 A là dân số của nước đó sau n năm
b) dân số sau 15 năm là 65000000(1+ )15 = 74 349 979 người
Câu 9 (2 điểm): Theo số liệu thống kê của tỉnh A. Cuối năm 2007 dân số của huyện X (thuộc tỉnh A) có 60946 người. Tính xem hàng năm trung bình dân số huyện X tăng bao nhiêu %? Biết trước đó 2 năm (tức cuối năm 2005) dân số huyện X có 13278 người.
II/ DẠNG GIẢI PHƯƠNG TRÌNH 
- HỆ PHƯƠNG TRÌNH - HÀM SỐ - THỐNG KÊ:
*** GIẢI PHƯƠNG TRÌNH BẬC HAI MỘT ẨN: 
+ CASIO fx 500MS: Nhập a=b=c= 
+ CASIO fx 570MS: Nhập a=b=c= 
+ CASIO fx 570ES: MODE 5 3 Nhập a=b=c= 
++ Lưu ý: Nếu nghiệm có xuất hiện: ở góc phải (đối với máy 500; 570Ms); i sau giá trị nghiệm (đối với máy 500; 570ES) Thì kết luận PT vô nghiệm trên số thực
*** GIẢI HỆ PHƯƠNG TRÌNH BẬC NHẤT 2 ẨN: 
+ CASIO fx 500MS: 1 2 Nhập 
+ CASIO fx 570MS: 1 2 Nhập 
+ CASIO fx 570ES: MODE 5 1 Nhập 
*** GIẢI HỆ PHƯƠNG TRÌNH BẬC NHẤT 3 ẨN: 
+ CASIO fx 500MS: 1 3 
+ CASIO fx 570MS: 1 3 
+ CASIO fx 570ES:MODE 5 2
Nhập 
Bài 1 : a) Vẽ đồ thị hàm số y = 2x + 3 và y = - 3x +2 trên cùng mặt phẳng toạ độ 
 b ) Gọi A , B lần lượt là giao điểm của các đường thẳng trên với trục 0x . C là giao điểm của hai đường thẳng đó . Tìm toạ độ của A , B , C .
 c ) Tính chu vi và diện tích của tam giác ABC ( Đơn vị đo trên các trục là centimét ) .
 d ) Tính các góc của tam giác ABC ( làm tròn đến độ ) .
HD: 
x
O
C
A
B
(1)
(2)
y
a/ .
+Vẽ đồ thị hàm số y = 2x + 3 : 
- Cho : N(0;3)
- Cho : A(-1,5;0)	.(0,25đ)	
- Đường thẳng NA là đồ thị hàm số y = 2x + 3 .	(0,25đ)
+Vẽ đồ thị hàm số y = - 3x +2 :
- Cho : M(0;2)
- Cho : B(0,7;0)	 .(0,25đ)
- Đường thẳng MB là đồ thị hàm số y = - 3x +2 (0,25đ)
b/(0,75Đ).Tọa độ của A là nghiệm của hệ phương trình :
 .(0,25đ) 
 Tọa độ của B là nghiệm của hệ phương trình :
 .(0,25đ) 
 Tọa độ của C là nghiệm của hệ phương trình :
 	.(0,25đ)
 c ) /(0,75Đ).Từ C hạ 
(0,25đ)
(0,5đ)
 (Có Thể dùng định lí Pytago và công thức tính chu vi ;diện tích để tính)
d/(1Đ). xét 
xét 
xét 
 Bài 2: Cho tam giác ABC có các cạnh :
 AB : 2x + 3y + 8 = 0 AC : 4x – 5y – 6 = 0 BC : 5x + 3y – 7 = 0 
Tính tọa độ của các đỉnh A, B , C 
Tính diện tích tam giác ABC .
Giải: 
(Tọa độ của A là nghiệm của hệ phương trình :
 Tọa độ của B là nghiệm của hệ phương trình :
 Tọa độ của C là nghiệm của hệ phương trình :
 b ) 
Bài 3: Tìm số dư khi chia đa thức P(x) = 17x5 – 5x4 + 8x3 + 13x2 – 11x - 357 cho x – 2,18567.
giải : 2,18567 
 17 5 – 5 4 + 8 3 + 13 x2 – 11 - 357 
Kết quả : 498,438088. 
Bài4: Biết f(x) chia x – 2 dư 2005; f(x) chia x – 3 dư 2006.hãy tìm số dư khi chia f(x) cho x2 – 5x + 6?
giải : f(x) chia (x-2) dư 2005 => f(2) = 2005
	f(x) chia x-3 dư 2006 => f(3) = 2006	
Gọi phần dư khi chia f(x) cho x2 – 5x + 6 là r(x) = ax + b
 Ta có : f(x) = (x2 – 5x + 6 ).Q(x) + r(x) = (x -2)(x-3) + ax + b	
	f(2) = 2005 = 2a + b
	f(3) = 2006 = 3a + b	
a = 1 ; b = 2003
Vậy phần dư khi chia f(x) cho x2 – 5x + 6 là x + 2003	
Bài5: Tìm số dư trong phép chia (x + 1)(x + 3)(x + 5)(x + 7) cho x2 + 8x +11?
giải : 	Ta có (x + 1)(x + 3)(x + 5)(x + 7) = (x2 + 8x + 7)(x2 + 8x +15)	
	= (x2 + 8x + 11 - 4)(x2 + 8x + 11 + 4)	= (x2 + 8x + 11)2 – 42 	
	Vậy (x + 1)(x + 3)(x + 5)(x + 7) chia x2 + 8x +11 dư -16 	
Bài6: Giải phương trình sau: 
 x2 + =- x (1)
Đặt -x = t, ta có x2 + = t2 + 2 .	(1): t2 + 2 = t	ó t2 – t + 2 = 0 => phương trình (1) vô nghiệm	
Bài7:Cho P(x) = x3 + ax2 + bx + c. Biết P(1) = -25; P(2) = -21; P(3) = - 41.
Tìm a, b, c 
Tìm số dư khi chia P(x) cho x + 4
Tìm số dư khi chia P(x) cho 5x + 7
giải: a) P(1) = -25 ó a + b + c = -26
	 P(2) = -21 ó 4a + 2b +c = -29
	P(3) = -41 ó 9a + 3b + c =-68	 
Ta giải hệ phương trình được a = -18 ; b = 51 ; c = -59	P(x) = x3 – 18x2 + 51x -59
b) = P(-4) = -615	
c) = P (-7/5) = 	
Bài8: Cho đa thức f(x) = ax5 – bx3 + cx +, biết f( - 2011) = - 1. Tính f(2011)?
giải : Ta có f(- 2011) = - 20115a + 20113b – 2011c + 
 f( 2011) = 20115a - 20113b + 2011c + 
 suy ra f(- 2011) + f( 2011) = 2 
 f( 2011) = 2 + 1
Ấn máy : 2 2010 + 1 được kêt quả : 90,66604709. 
Bài9: 
a/ Giải hệ phương trình ( với x, y dương) 
b/ Giải phương trình : 2,415x2 + 5,125x – 7,456 = 0.
Giải :
a) ta có x = 1,425y thế và phương trình thứ nhất, ta được :
 1,030625y2 = 2,456
 Vì y dương nên y = = 1,543703343
 x = 2,199777264 
2
1
MODE
MODE
MODE
b) 	
(a ?) 2,415 
(b ?) 5,125 
(c ?) (- )7,456 
 Kết quả : Bài 10: Cho đa thức: P(x) = ax3 + 3x2 +bx – 15 vừa chia hết cho x+5,
 vừa chia hết cho x-3. Tính P(-6); P(62)?
óBiến đổi:
P(x) = ax3 + 3x2 +bx – 15 vừa chia hết cho x+5, vừa chia hết cho x-3.
x=-5 và x=3 là nghiệm của P(x) 
Thay x=-5 và x=3 vào P(x) ta có hệ:
 Giải được 
P(x) = x3 + 3x2 -13x – 15 
	P(-6) = (-6)3 + 3.(-6) 2 -13.(-6) – 15 =-45
	P(62) = (62) 3 + 3.(62) 2 -13.62 – 15 = 249039
Bài 11: 
a/Tìm số dư khi chia đa thức P(x) = x7 + 16x6 + x + 2 cho 2x + 3.
b/Cho đa thức f(x) = x4 + a x3 +bx2 + cx + d . Với a, b, c, d là hằng số,
 biết f( 1) =10, f( 2) =20 , f(3) = 30. Tính f(12) + f(- 8)
a/ Gọi Q(x) là đa thức thương, r là số dư.
Do P(x) chia cho 2x+3 nên P(x)=(2x+3)Q(x)+r
Suy ra r = P(-1,5)=
b/ f(1) =10x =10 ; f(2) =10x = 20 ; f(3) = 10x =30 
 f(x) -10x chia heát cho x-1 ; x-2 ; x-3 
 f(x) = (x-1)(x-2)(x-3)(x-r) +10x ( 0,5ñ)
 f(12) = 11.10.9 (12-r) +120 
 f(-8) = -9.(-10) .(-11)(-8-r) -80 = 9.10.11(8+r) 
 f(12) + f(-8) =11.10 .9 (12+8) +40 =19840 ( 0,5ñ)
Bài 12: Cho đa thức P ( x) = x5 + ax4 + bx3 + cx2 + dx + e. Biết P ( 1) =3; P (2) =9; P(3)= 19 ; P(4) = 33 ; P (5) =51. Tính P (6); P(7); P(8); P(9); P(10 ); P(11)?
Giải: Ta có 3 = 2.12 +1
 9 = 2.22 +1
 19 = 2.33 +1.
 33 = 2.42 +1
 51 = 2.52 +1
Đặt Q(x) = P (x) – (2x2 +1) ( 1)
 Ta có : Q(1) = Q(2) = Q(3) = Q(4) = Q(5) =0 
Ta thấy hệ số của x5 là 1 nên 1;2;3;4;5; là nghiệm của Q(x) .
Do đó : Q(x) = (x-1) (x-2) (x-3) (x-4) (x-5) (2)
Từ (1) và (2) suy ra : P(x) = (x-1) (x-2) (x-3) (x-4) (x-5)+(2x2 +1).
Vậy P(6) = (6-1)(6-2)(6-3)(6-4)(6-5) + (2x2 +1).
 = 5.4.3.2.1+73.
 P(6) = 193
 P(7) = 819
P(8) = 5169
P(9) = 40483
P(10) = 363081
P(11) = 3629043 	
Bài 13: Tìm chữ số hàng đơn vị của số ?
	Vậy chữ số hàng đơn vị của là 9.
Bài14 : Khi thống kê điểm Toán của một khối lớp 9 , Trường thcs T. Được ghi lại theo bảng tần số sau:
Điểm (X) 
1
4
4,5
5
5,5
6
6,5
7
7,5
8
8,5
9
10
Số HS(n)
1
22
10
60
65
14
12
10
8
4
2
1
1
a/ Tính tổng số học sinh và điểm trung bình của khối lớp 9?
b/Tính độ lệch chuẩn và phương sai ?
+ Nêu qui trình bấm trên máy tính Vinacal hoặc Casio fx500MS, fx570Ms, fx500ES, fx570ES: ........... 
 + Đáp số: 
a/ Tổng số hs: 
Điểm trung bình: 
b/ 
III/ DÙNG PHÉP GÁN - LẬP CÔNG THỨC TRUY HỒI
- TÍNH GIÁ TRỊ BIỂU THỨC:
Bài 1: Cho dãy số : 
a/ Lập quy trình ấn phím liên tục tính ?
b/ Tính ?
GIẢI: a/ Lập quy trình ấn phím liên tục tính ?
 1 SHIFT STO A
 2 SHIFT STO B 
 Lặp lại dãy phím 
3
X
Alpha
B
+
...A
Shift
STO
A
 3
X
Alpha
A
+
...B
Shift
STO
B
	.............
b/ Tính 
 Bài 2: Cho 
 a/ Tính 	
 b/ Lập công thức truy hồi tính theo và : ?
 c/ Viết quy trình ấn phím liên tục theo và ?
 a/ Tính 
	 SHIFT STO A
	 SHIFT STO B
	 SHIFT STO C
	n=n+1: 
 b/ Lập công thức truy hồi tính theo và ?
 Vậy công thức: 
 c/ Viết quy trình ấn phím liên tục theo và ?
	7 SHIFT STO A
	12,26099034 SHIFT STO B
 	 SHIFT STO A 
	 SHIFT STO B 
	 SHIFT STO A 
 SHIFT STO B 
.................................
Bài 3 : Cho dãy số được cho bởi công thức Un = với n = 1,2,3,
Tính U1 , U2 ,U3 , U4 , U5 , U6 , U7 , U8
Lập công thức tính Un+1 theo Un và Un-1 ( có trình bày cách giải )
Lập quy trình ấn phím liên tục tính Un+1 theo Un và Un-1 ( có lời giải )
Bài 3 : a) 
 ( Lưu ý; n := n+1 nghĩa là: n sau hơn n liền trước 1 đơn vị)
U1 = 1 ; U2 = 26 ; U3= 510 ; U4= 8944 ; U5 = 147884 ; U6 = 2380260
U7 = 36818536 ; U8 = 565475456
b)Công thức truy hồi có dạng Un+1 = aUn +bUn-1 + c
Ta có hệ 
 Giải hệ ta được a = 26 ; b = - 166 ; c = 0 
Vậy công thức truy hồi là Un+1 = 26Un – 166Un-1
Gán 1 vào A ; 26 vào B 
A = 26B – 166A : B = 26A – 166B = ... 
 Bài 4 : Cho dãy số : với n = 0; 1; 2; 3; 
 a) Tính 5 số hạng U0; U1; U2; U3 ; U4 .
 b) Trình bày cách tìm công thức truy hồi Un+2 theo Un+1 và Un . 
 c) Viết quy trình ấn phím liên tục tính Un+2 theo Un+1 và Un . Từ đó tính U5 và U10 .	
Giải a.	Thay n = 0 ; 1 ; 2 ; 3 ; 4 vào công thức ta được :
N
0
1
2
3
4
 Un
0
1
6
29
132
Giả sử Un + 2 = aUn + 1 + bUn + c.
 Thay n = 0 ; 1 ; 2 vào công thức, ta được hệ phương trình :
	Þ	 Þ	 	Vậy Un + 2 = 6Un + 1 – 7Un 
 c.	Quy trình bấm phím liên tục tính Un + 2 trên máy Casio .....:
	 1 
	 6 
 6 - 7 
 6 - 7 
  n – 1 và đọc kết quả 
 (U5 = 589 ; U10 = 993 054) 
Bài5/ Tính: 
a/ 
b/ 
c/ 
d/ 
e/ 
f/
 Biểu thức trong căn có thể viết 
 = 
 Ta có 
 = = 0.4999998763
Bài 6 : Tính giá trị của biểu thức sau : 
 a) 
 b) 
Giải :a) Biến đổi đưa về được 
 Tính đúng kết quả A = 43,8442
 b) Tính đúng kết quả B = 25240,4538
Bài7/ Rút gọn biểu thức (kết quả viết dưới dạng phân số)
C = .
Bài8/
 Cho P = 3 + 32 + 33 + .+ 319
 Q = . Tính M = ?
Giải:
Ta có : 
 Vậy M = 320 = 3486784401.
Bài9/ Tính toång : M = 
Giải:
 2008 : 2010 = 0,999005 
Bài10/ Tính: A = 1 +2 +4 + 8 +16++1073741824
A = 20 + 21 + 22 + 23 + .+ 230
 2A = 21 + 22 + 23 +24+ .+ 231 
 2A – A = 231 – 1 = 2147483647 
Bài 11: Cho phân số: 
Tìm , biết a, b, c là nghiệm của hệ 
óBiến đổi:
Giải hệ được : a= 2; b = 5; c = 4	
Phân số: 	
Bài 12: Tìm x ,y biết : 	
Hd : 
 Vậy x = 7 , y = 6. 
Bài 13: Tìm a,b,c biết:
	HD:
Bài 14 : Tính 
 Giải 
 Đặt A = 
Bài 15: Tính tổng: 	
óBiến đổi:	Đặt: x = 	;Đk: x>0	
	x2 = 2008 + 
	x2 = 2008 + x x2 –x -2008 = 0	
Bài 16: Tính 
Đặt:
 a 
 = 
 PHÒNG GIÁO DỤC BUÔN ĐÔN KỲ THI HỌC SINH GIỎI HUYỆN – NĂM 2008-2009
Trường THCS Nguyễn Trường Tộ MÔN : GIẢI TOÁN TRÊN MÁY TÍNH CASIO
 =:& 	Khoá thi, Ngày: Tháng 12 năm 2008
ĐỀ THI:
 ( Thời gian: 150’, không kể thời gian giao đề)
 ó óó&óóó
Kết quả các bài tập lấy chính xác đến 3 số thập phân có làm tròn (nếu có)
Câu1(2Đ): Tính ?	 
Câu2(2Đ): Cho dãy các số a, a, a,  Thoả mãn 
và với n =1,2,3, .Tính ?
Câu3(2Đ): Tính tổng: 	
Câu5(2Đ): Cho tam giác ABC vuông ở A;AH là đường cao(H). Kẻ HD và . Biết AH = 4cm, HB = 3cm.
	a/ Chứng minh tứ giác AEHD là hình chữ nhật.
	b/ Tính độ dài các đoạn thẳng AB,BC và diện tích tứ giác BDEC.
Câu6(2Đ): Cho đa thức : P(x) = ax3 + 3x2 +bx – 15 vừa chia hết cho x+5, vừa chia hết cho x-3. 
Tính P(-6); P(62)?
Câu7(2Đ): Theo số liệu thống kê của tỉnh DakLak. 
Cuối năm 2007 dân số Huyện Buôn Đôn có 60946 người. Tính xem hàng năm trung bình dân số Huyện Buôn Đôn tăng bao nhiêu %? Biết trước đó 2 năm (Tức cuối năm 2005) dân số Huyện Buôn Đôn có 13278 người .
Câu8(2Đ): Cho tam giác, trong đó BC = 11cm, .
 Gọi N là chân của đường vuông góc kẽ từ A đến cạnh BC. Tính AN, AC?
 Câu9(2Đ): Cho phân số: 
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
SỞ GD & ĐT ĐĂK LĂK ĐỀ THI HSG TỈNH 
 Phòng GD Buôn Đôn Môn: GIẢI TOÁN TRÊN MÁY CASIO – LỚP 9 Trường THCS Nguyễn Trường Tộ Thời gian làm bài : 150 Phút
Bài 1: (2 điểm)
Tìm x biết :
x = ....................................
Bài 2: (2 điểm)
Tìm ba chữ số tận cùng của số sau: A = 12 +23 +34 + 45+ + 1516	
Ba chữ số hàng chục của A là : ...........................................
Bài 3: (2 điểm)
Tính tổng : [ x ] là phần nguyên của x, là số nguyên lớn nhất không vượt quá x
S = ................................................	
S = 
Bài 4: (2 điểm)
Cho P(x) = x4 + ax3 + bx2 + cx . Biết P(-1) = 0 ; P(1) = 5 ; P(2) = 36 ; P(3) = 120
Hãy tính P(0,(428571))
 P(0,(428571)) = .............................................	
Bài 5: (2 điểm)
Tìm số thập phân thứ 2007 khi chia 1 cho 49
Số thập phân thứ 2007 khi chia 1 cho 49 là :	................................	
Câu 6: (2 điểm)
Cho P(x) = x4 +ax3 + bx2 + cx + d có P(1) = 1988, P(2) = -10031, P(3) = - 46062, 
P(4) = -118075. Tìm  P(2005).
Câu 7: (2 điểm)
Cho dãy số a1 = 3, a2 = 4, a3 = 6, , a n+1 = a1 + n.
Số thứ 2007 của dãy số trên là số nào?
Tính tổng của 100 số hạng đầu tiên của dãy số trên?
Bài 8: (2 điểm). 
Tính chính xác tổng sau :
 S = 1.1! + 2.2! + 3.3! + + 15.15! + 16. 16! 
S = ..
Bài 9: (2 điểm)
 a) Nếu viết 2 số 22007 và 52007 đứng cạnh nhau thì ta được 1 số có bao nhiêu chữ số ? 
Được một số có: ................................................... chữ số	
Câu 10: (2 điểm)
Số đo góc AIB = .......................................	
Một tờ giấy hình chữ nhật ABCD có kích thước AB= 29,7 cm , AD= 21cm . Gọi M là trung điểm của DC. Hai đường thẳng BD và AM cắt nhau I. Tính góc AIB.
Một hình thang cân có hai đường chéo vuông góc với nhau. Đáy nhỏ dài 11,352 cm, cạnh bên dài 20,196 cm. Tính diện tích hình thang cân.
Diện tích hình thang = .......................................	
-----------------------------------------
HƯỚNG DẪN CHẤM VÀ ĐÁP ÁN CHI TIẾT
Môn : GIẢI TOÁN TRÊN MÁY CASIO – LỚP 9
Bài 1: (2 điểm)
Đáp số : 
Bài 2: (2 điểm)
Ta có:
 12 + 23 +34 + 45 ++ 1011 = 13627063605 605 (mod1000)
 1112 721 (mod1000) ; 
 1213 072 (mod1000) ; 
 1314 289 (mod1000)
 1415 224 (mod1000); 
 1516 625 (mod1000)
Do đó : 12 + 23 +34 +45 ++ 1016 536 (mod1000)
Vậy ba chữ số tận cùng của số đã cho là 536
Bài 3: (2 điểm)
Tính tổng : [ x ] là phần nguyên của x, là số nguyên lớn nhất không vượt quá x
	S = 
	Ta xét biểu thức : n(n +1)(n+2)(n+3) = (n2 + 3n)2 + 2(n2 + 3n)
	=> (n2+3n)2 < n(n+1)(n+2)(n+3 < (n2 + 3n + 1)2
	=> n2 + 3n < < n2 + 3n + 1
	=> = n2 + 3n
Vậy: S = ( 12 + 3.1) + (22 + 3.2) + . . . + (20072 + 3.2007)
 = (12 + 22 + . . . + 20072) + 3(1 + 2 + 3 +. . . + 2007)
 = 2007(2007 + 1)(2.2007 + 1) + 
Kết quả S = 16186719924
Bài 

File đính kèm:

  • docGiai_Toan_tren_may_tinh_cam_tay.doc