Toán học - Phương pháp tọa độ trong không gian
4. Phương trình mặt cầu
Dạng 1: (1) , mặt cầu tâm I(a; b; c) và bán kính R.
Dạng 2: (2) , với điều kiện là
phương trình mặt cầu có tâm I(A; B; C) và bán kính .
5. Phương trình mặt phẳng
Véc tơ vuông góc với mặt phẳng được gọi là VTPT của mặt phẳng .
Véc tơ có giá song song hoặc nằm trên mặt phẳng được gọi là VTCP của mặt phẳng .
Nếu là hai véc tơ không cùng phương có giá song song hoặc nằm trên mặt phẳng thì là một VTPT của mặt phẳng .
Nếu ba điểm A, B, C không thẳng hàng thì là một VTPT của mặt phẳng (ABC).
Mặt phẳng đi qua điểm và có VTPT có phương trình
.
Phương trình dạng được gọi là phương trình tổng quát của mặt phẳng với VTPT .
hai đường thẳng Cho hai đường thẳng Xét hệ phương trình , khi đó + , hay hệ phương trình (I) có vô số nghiệm. + , hay và hệ (I) vô nghiệm. + và cắt nhau và hệ phương trình (I) có nghiệm duy nhất . + và chéo nhau và hệ phương trình (I) vô nghiệm 8.3. Vị trí tương đối giữa đường thẳng và mặt phẳng Cho đường thẳng và mặt phẳng có VTPT . Xét phương trình ẩn là , khi đó + phương trình (*) vô nghiệm + phương trình (*) có vô số nghiệm + và cắt nhau tại một điểm phương trình (*) có nghiệm duy nhất Lưu ý: 8.4. Vị trí tương đối giữa mặt phẳng và mặt cầu Cho mặt phẳng và mặt cầu (S) có tâm . Gọi . + Nếu và (S) không giao nhau. + Nếu và (S) tiếp xúc nhau tại một điểm H. ( gọi là tiếp diện của mặt cầu (S)). + Nếu và (S) cắt nhau theo giao tuyến là một đường tròn (C) có bán kính và có tâm H là hình chiếu vuông góc của I trên . Lưu ý: Để tìm tọa độ tâm H của đường tròn (C) ta làm như sau - Lập phương trình đường thẳng đi qua I và vuông góc với . - Tọa độ điểm H là nghiệm của hệ gồm phương trình của và phương trình . 8.5. Vị trí tương đối giữa đường thẳng và mặt cầu Cho đường thẳng thẳng và mặt cầu (S): Gọi , trong đó là VTCP của + Nếu và (S) không có điểm chung + Nếu tiếp xúc với (S) ( là tiếp tuyến của mặt cầu (S)) + Nếu cắt (S) tai hai điểm A, B ( gọi là cát tuyến của mặt cầu (S)) 8.6. Vị trí tương đối giữa một điểm và mặt cầu Cho điểm và mặt cầu (S):,tâm thì + Nếu thì điểm M nằm ngoài mặt cầu (S) + Nếu thì điểm M nằm trên mặt cầu (S) + Nếu thì điểm M nằm trong mặt cầu (S) 9. Góc 9.1. Góc giữa hai đường thẳng Nếu đường thẳng có VTCP và đường thẳng có VTCP thì 9.2. Góc giữa đường thẳng và mặt phẳng Đường thẳng có VTCP và mặt phẳng có VTPT thì 9.3. Góc giữa hai mặt phẳng Nếu mặt phẳng có VTPT và mặt phẳng có VTPT thì II. MỘT SỐ DẠNG TOÁN THƯỜNG GẶP Vấn đề 1: HỆ TỌA ĐỘ TRONG KHÔNG GIAN TỌA ĐỘ CỦAVÉCTƠ, TỌA ĐỘ CỦA ĐIỂM Bài 1: Trong hệ tọa độ Oxy cho , , . Tìm tọa độ các véctơ sau: a) b) c) d) Bài 2: Trong hệ tọa độ Oxy cho , , , a) xác định k để véctơ cùng phương với b) xác định các số thực m, n, p để c) Tính Bài 3: Cho a) Tìm x, y để ba điểm A, B, C thẳng hàng b) Tìm giao điểm của đường thẳng AB với mặt phẳng yOz. Tính độ dài đoạn AB c) Xác định tọa độ điểm M trên mp Oxy sao cho nhỏ nhất. Bài 4: Trong hệ tọa độ Oxy cho , , a) Tính các tích vô hướng , . Trong ba véctơ trên có các cặp véctơ nào vuông góc b) Tính , Bài 5: Trong hệ tọa độ Oxy cho: a) Chứng tỏ rằng ABCD là hình chữ nhật. Tính diện tích của nó. b) Tính cos các góc của tam giác ABC c) Tìm trên đường thẳng Oy điểm cách đều hai điểm A, B d) Tìm tọa độ điểm M thỏa Bài 6: Trong hệ tọa độ Oxy cho: a) Tìm tọa độ trung điểm của đoạn AB b) Tìm tọa độ trong tâm tam giác ABC c) Tìm tọa độ điểm D để tứ giác ABCD là hình bình hành d) Tìm tọa độ điểm E để B là trọng tâm của tam giác ACE Vấn đề 2: TÍCH CÓ HƯỚNG HAI VÉCTƠ VÀ CÁC ỨNG DỤNG Bài 1: Trong không gian , tính tích có hướng biết rằng: a), b), c), Bài 2: Trong không gian , tính tích và kết luận sự đồng phẳng của các véc tơ, biết rằng: a) , , b) , , c) , , Bài 3: Trong không gian , Cho a) Chứng tỏ rằng A, B, C không thẳng hàng. b) Chứng tỏ rằng bốn điểm A, B, C, D không đồng phẳng. c) Tính diện tích tam giác ABC. d) Tính thể tích tứ diện ABCD. Bài 4: Trong không gian , cho hình chóp S.ABCD có: a) Tính diện tích tam giác SAB b) Tính diện tích tứ giác ABCD c) Tính thể tích hình chóp S.ABCD. Từ đó suy ra khoảng cách từ S đến mp(ABCD) d) Tính khoảng cách từ A đến mp(SCD) Bài 5: Trong không gian , cho hình hộp ABCD.A’B’C’D’. Biết rằng: a) Tìm tọa độ các đỉnh còn lại b) Tính thể tích hình hộp c) Tính thể tích tứ diện A.A’BC. Tính tỉ số d) Tính thể tích khối đa diện ABCDD’ Vấn đề 3: PHƯƠNG TRÌNH CỦA MẶT CẦU Bài 1: Trong không gian , tìm tâm và bán kính mặt cầu a) b) Bài 2: Trong không gian , cho . a) Lập phương trình mặt cầu tâm A bán kính AB b) Lập phương trình mặt cầu đường kính AB c) Lập phương trình mặt cầu tâm B tiếp xúc với mặt phẳng Bài 3: Trong không gian , cho a) Viết phương trình mặt cầu đi qua bốn điểm A, B, C, D b) Tìm hình chiếu của tâm mặt cầu ở câu a) lên các mp Bài 4: Trong không gian , hãy lập phương trình mặt cầu đi qua 3 điểm: và có tâm nằm trên mp Oxy Bài 5: Trong không gian , cho a) Chứng tỏ rằng ABCD là một tứ diện b) Viết phương trình mặt cầu ngoại tiếp tứ diện ABCD c) Viết phương trình mặt cầu cắt mp(ABC) theo thiết diện là một đường tròn có bán kính lớn nhất. Bài 6: Chứng tỏ rằng phương trình: luôn luôn là phương trình của một mặt cầu. Tìm m để bán kính mặt cầu là nhỏ nhất. Bài 7: Chứng tỏ rằng phương trình: luôn là phương trình của một mặt cầu. Tìm m để bán kính mặt cầu là lớn nhất. Vấn đề 4: PHƯƠNG TRÌNH MẶT PHẲNG Bài 1: Trong không gian , cho A(-1;2;3), B(2;-4;3), C(4;5;6) a) Viết phương trình mp đi qua A và nhận vectơ làm vectơ pháp tuyến b) Viết phương trình mp đi qua A biết rằng hai véctơ có giá song song hoặt nằm trong mp đó là c) Viết phương trình mp qua C và vuông góc với đường thẳng AB d) Viết phương trình mp trung trực của đoạn AC e) Viết phương trình mp (ABC) Bài 2: Trong không gian , cho A(-1;2;1), B(1;-4;3), C(-4;-1;-2) a) Viết phương trình mp đi qua I(2;1;1) và song song với mp (ABC) b) Viết phương trình mp qua A và song song với mp c) Viết phương trình mặt phẳng đi qua hai điểm A, B và vuông góc với mặt phẳng d) Viết phương trình mặt phẳng đi qua A, song song với trục Oy và vuông góc với mặt phẳng e) Viết phương trình mp qua C song song với mp Oyz. Bài 3: Trong không gian , viết phương trình mp đi qua M(2;1;4) và cắt các trục Ox, Oy, Oz tại các điểm A, B, C sao cho: OA = OB = OC. Bài 4: Trong không gian , viết phương trình mp đi qua M(2;2;2) cắt các tia Ox, Oy, Oz tại các điểm A, B, C sao cho thể tích tứ diện OABC nhỏ nhất. Bài 5: Trong không gian , viết phương trình mp đi qua M(1;1;1) cắt các tia Ox, Oy, Oz lần lược tại các điểm A, B, C sao cho tam giác ABC cân tại A, đồng thời M là trọng tâm tam giác ABC. Bài 6: Trong không gian , cho tứ diện ABCD, biết rằng: a) Viết phương trình mp chứa A và song song với mp (ABC) b) Viết phương trình mp cách đều bốn đỉnh của tứ diện đó. Bài 7: Trong không gian , cho mp(P): và hai điểm a) Tính khoảng cách từ A đến mp (P) b) Viết phương trình mp chứa hai điểm A,B và tạo với mp (P ) một góc có số đo lớn nhất. c) Viết phương trình mặt cầu tâm B tiếp xúc với mp (P) Bài 8: Trong không gian , cho ba mặt phẳng: a) Trong ba mặt phẳng đó mp nào song song với mp nào? b) Tìm quỹ tích các điểm cách đều và c) Tính khoảng cách giữa hai mp và d) Tìm quỹ tích các điểm cách một khoảng bằng 1 e) Viết phương trình mặt cầu có tâm thuộc trục Ox và tiếp xúc với 2 mpvà Bài 9: Trong kh.gian , cho 2 mặt phẳng a) Tính cosin góc giữa hai mp đó b) Viết phương trình mặt cầu có tâm thuộc Oy tiếp xúc với cả hai mp đó. c) Viết phương trình mp đi qua giao tuyến của hai mp đó và song song với trục Ox Bài 10: Trong không gian , cho mặt phẳng và mặt cầu (C ): a) Chứng tỏ rằng mặt phẳng (P) và mặt cầu (C ) cắt nhau. Tìm bán kính của đường tròn giao tuyến b) Lập phương trình các tiếp diện của mặt cầu song song với mặt phẳng (P) Bài 11: Trong không gian , cho hai mặt phẳng và mặt cầu (C) a) Lập phương trình tiếp diện của mặt cầu song song với Ox và vuông góc với mặt phẳng b) Tính góc giưa mp với Ox c) Lập phương trình mp đi qua hai A(1;0;1) điểm B(1;-2;2) và hợp với mặt phẳng một góc 600 Bài 13: Trong không gian , cho bốn điểm a) Viết phương trình mặt phẳng ABC. b) Tính góc cosin giữa hai mặt phẳng (ABC) và (ABD) Bài 14: Trong không gian , viết phương trình mặt phẳng đi qua điểm M(2;1;-1) và qua giao tuyến của hai mặt phẳng Bài 15: Trong không gian , viết phương trình mặt phẳng đi qua giao tuyến của hai mp đồng thời song song với mặt phẳng Bài 16: Trong không gian , viết phương trình mp đi qua giao tuyến của hai mặt phẳng đồng thời vuông góc với mp Bài 17: Trong không gian , cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng 2. Gọi I, J, K lần lượt là trung điểm các cạnh BB’, C’D’và D’A’. a) Chứng tỏ rằng mặt phẳng (IJK) vuông góc với mặt phẳng (CC’K) b) Tính góc giữa hai mặt phẳng (JAC) và (IAC’) c) Tính khoảng cách từ I đến mp(AJK) Bài 18: Trong không gian , cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật . Đặt hệ trục sao cho các tia Ox, Oy, Oz lần lượt trùng với các tia AB, AD, AS. a) Từ điểm C vẽ tia CE cùng hướng với tia AS. Tìm tọa độ của E. b) Tính khoảng cách từ C đến mặt phẳng (SBD). c) Chứng tỏ rằng mặt phẳng (SAB) vuông góc với mặt phẳng (SBC) d) Tính cosin góc giữa hai mặt phẳng (SBC) và (SDC) e) Tính thể tích hình chóp S.ABCD Bài 19: Trong không gian , cho tam giác đều ABC cạnh a; I là trung điểm của BC. D là điểm đối xứng với điểm A qua điểm I. Dựng đoạn SD = vuông góc với mp (ABC). Chứng minh rằng: a) b) c) Tính thể tích hình chóp S.ABC Vấn đề 5: PHƯƠNG TRÌNH ĐƯỜNG THẲNG Bài 1: Trong không gian , viết phương trình tham số của đường thẳng: a) Đi qua A(1; 2; -1) và có vectơ chỉ phương là b) Đi qua hai điểm I(-1; 2; 1), J(1; -4; 3). c) Đi qua A và song song với đường thẳng d) Đi qua M(1; 2; 4) và vuông góc với mặt phẳng Bài 2: Trong không gian , tìm phương trình chính tắc của đường thẳng: a) Qua điểm và song song với đường thẳng b) Qua và song song với hai mặt phẳng c) Qua điểm M(1;1;4) và vuông góc với hai đường thẳng: (d1): và (d2): Bài 3: Cho tứ diện ABCD, biết rằng: A(2;-1;6), B(-3;-1;-4), C(5;-1;0), D(1;2;1) a) Viết phương trình đường thẳng qua A và vuông góc với mặt phẳng (BCD). b) Viết phương trình đường thẳng qua điểm I(1;5;-2) và vuông góc với cả hai đường thẳng AB, CD. Bài 4: Viết phương trình hình chiếu vuông góc của đường thẳng (d): lên các mặt phẳng tọa độ. Bài 5: Trong không gian , viết phương trình hình chiếu (vuông góc) của đường thẳng (d): lên mặt phẳng Bài 6: Trong không gian , viết phương trình giao tuyến của hai mặt phẳng Vấn đề 6: VỊ TRÍ TƯƠNG ĐỐI CỦA CÁC ĐƯỜNG THẲNG VÀ CÁC MẶT PHẲNG. GÓC VÀ KHOẢNG CÁCH Bài 7: Xét vị trí tương đối giữa hai đường thẳng: a) (d) và (d’) b) (d) và (d’) c) (d) và (d’) d) (d)và (d’) là giao tuyến của hai mặt phẳng: Bài 8: Xét vị trí tương đối của đường thẳng và mặt phẳng. Tìm tọa độ giao điểm của chúng nếu có: a) (d) và b) (d) và c) (d) và Bài 9: Tính góc giữa các cặp đường thẳng: a) (d) và (d’) b) (d) và (d’) c) (d) và (d’) Bài 10: Tính khoảng cách giữa các cặp đường thẳng ở bài 9 (nếu chúng chéo nhau hoặc song song nhau) Bài 11: Tính góc giữa đường thẳng và mặt phẳng: a) (d) và b) (d) và c) (d) và Bài 12: Tính khoảng cách từ điểm M(-1;2;3) đến các đường thẳng: a) (d1): b) (d2): c) (d3) là giao tuyến của 2 mặt phẳng Bài 13: Cho đường thẳng (d) và . a) Tìm giao điểm giữa (d) và b) Viết phương trình mp chứa (d) và hợp với một góc có số đo lớn nhất c) Viết phương trình mp chứa (d) và hợp với một góc có số đo nhỏ nhất Bài 14: Trong không gian cho bốn đường thẳng (d1):, (d2): (d3): , (d4) : a) Chứng tỏ rằng (d1) và (d2) cùng nằm trên một mặt phẳng. Viết phương trình tổng quát của mặt phẳng đó b) Chứng tỏ rằng tồn tại một đường thẳng (d) cắt cả bốn đường thẳng đã cho. c) Tính côsin góc giữa (d1) và (d3) Bài 15: Cho ba điểm A(1;1;1), B(-1;2;0), C(2;-3;2) và mp a) Tính cosin góc giữa hai đường thẳng AB và BC b) Tìm trên mp điểm cách đều 3 điểm A, B, C c) Tìm phương trình hình chiếu của đường thẳng AB lên mp Bài 16: Cho tứ diện ABCD, biết rằng: A(1;1;2), B(1;2;1), C(2;1;1), D(1;1;-1) a) Tính góc giữa hai đường thẳng AC và BD b) Tính khoảng cách giữa hai đường thẳng AB và CD c) Tìm tọa độ hình chiếu H của A lên mp (BDC) d) Tính khoảng cách từ A đến đường thẳng DB e) T ính khoảng cách từ gốc tọa độ đến mp (BCD) Bài 17: Tìm điểm M’ đối xứng với điểm M(2;-1;1) qua mp Bài 18: Tìm điểm A’ đối xứng với điểm A(2;-1;5) quađường thẳng Bài 19: Cho A(3;1;0), B(1;-2;5) và mp. Tìm điểm M trên mp sao cho nhỏ nhất. Bài 20: Cho hai điểm A(2;1;1), B(1;2;-1) và mp. Tìm điểm M trên mp sao cho lớn nhất Bài 21: Cho hai điểm A(2;1;1), B(1;2;-1) và mp. Tìm điểm M trên mp sao cho nhỏ nhất. Bài 22: Cho hai điểm A(3;1;0) , B(1;-2;5) và mp. Tìm điểm M trên mp sao cho nhỏ nhất. Bài 23: Cho ba điểm A(3;1;0), B(1;-2;5), C(-1;-2;-3) và mp. Tìm điểm M trên mp sao cho nhỏ nhất. Bài 24: Cho 4 điểm A(3;1;0),B(1;-2;5), C(-1;-2;-3), D(1;5;1) và mp. Tìm điểm M trên mp sao cho nhỏ nhất. Bài 25: Cho ba đường thẳng (d1): , (d2): và (d3) là giao tuyến của hai mặt phẳng Viết phương trình song song với (d1) cắt cả hai đường thẳng (d2) và (d3) Bài 26: Cho hai đường thẳng (d1): và (d2) là giao tuyến của hai mặt phẳng Viết phương trình đường thẳng đi qua A(1;-1;1) và cắt cả hai đường thẳng (d1), (d2) Bài 27: Viết phương trình của đường thẳng nằm trong mp và cắt cả hai đường thẳng (d1): ; (d2): Bài 28: Cho hai đường thẳng (d): và (d’): . a) Chứng tỏ rằng (d) và (d’ ) chéo nhau. Tính khoảng cách giữa chúng b) Viết phương trình đường vuông góc chung của chúng c) Tính góc giữa (d1) và (d2) Bài 29: Cho hai đường thẳng (d): và (d’): . a) Chứng tỏ rằng (d) và (d’ ) chéo nhau. Tính khoảng cách giữa chúng b) Viết phương trình đường vuông góc chung của chúng c) Tính góc giữa (d1) và (d2) Bài 30: Cho hai đường thẳng (d1): và (d2) là giao tuyến của hai mặt phẳng . Viết phương trình đường thẳng đi qua A(0;1;1) vuông góc với đường thẳng (d1) và cắt (d2) Bài 31: Trong không gian cho đường thẳng (d) là giao tuyến của hai mặt phẳng . Viết phương trình đường thẳng đi qua điểm M(0;1;-1) vuông góc và cắt đường thẳng (d). Bài 32: Cho hai điểm A(1;1;-5), B(0;1;-7) và đường thẳng (d) là giao tuyến của hai mặt phẳng . Tìm điểm M thuộc đường thẳng (d) sao cho chu vi tam giác AMB nhỏ nhất. PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN TRONG CÁC ĐỀ THI ĐH-CĐ KD-2002: Cho và . M là tham số Tìm m để ĐS: m = -1/2 KA-2002: Cho Viết ptmp (P) chứa và song song với Cho . Tìm tọa độ điểm H thuộc sao cho MH có độ dài nhỏ nhất. ĐS: (P): 2x – z = 0, H(2;3;4) KD-2003: Cho đường thẳng . Tìm k để ; ĐS: k = 1 KB-2003: Cho và điểm C sao cho . Tính khoảng cách từ trung điểm I của BC đến OA. ĐS: 5 KD-2004: Cho . Viết pt mặt cầu đi qua A, B, C có tâm thuộc (P). ĐS: (x – 1)2 + y2 + (z – 1)2 = 1 KB-2004: Cho . Viết pt đt qua A, cắt và vuông góc với d. ĐS: KD-2005: Cho CMR: . Viết pt mp(P) chứa cả 2 đường thẳng cho. Mp(Oxz) cắt d1, d2 lần lượt tại A, B. Tính diện tích OAB. ĐS: 1) 15x + 11y – 17z – 10 = 0. 2) 5 KA-2005: Cho Tìm tọa độ điểm I thuộc d sao cho Tìm tọa độ điểm . Viết pt tham số của : ĐS: 1) I1(-3; 5; 7), I2(3; -7; 1) 2) A(0; -1; 4), : x = t, y = -1; z = 4 + t. KD-2006: Cho Tìm tọa độ A’ đối xứng A qua d1 Viết pt đt đi qua A, vuông góc d1 và cắt d2 ĐS: 1. A’(-1; -4; 1) 2. KB-2006: Cho Viết pt (P) qua A, đồng thời song song với d1 và d2 Tìm tọa độ M thuộc d1, N thuộc d2 sao cho A, M, N thẳng hàng. ĐS: 1) (P): x + 3y + 5z – 13 = 0 2) M(0; 1; -1), N(0; 1; 1) KD-2007: Cho Viết ptđt d đi qua trọng tâm G của OAB và vuông góc mp(OAB). Tìm tọa độ M thuộc sao cho MA2 + MB2 nhỏ nhất. ĐS: 1) , 2) M(-1; 0; 4) KB-2007: Cho Viết pt mp(Q) chứa Ox và cắt (S) theo một đường tròn có bán kính bằng 3 Tìm tọa độ điểm M thuộc (S) sao cho khoảng cách từ M đến (P) lớn nhất. ĐS: 1) (Q): y – 2z = 0 2) M(-1; -1; -3) CĐ-2008: Cho Viết pt (P) qua A và vuông góc với d Tìm tọa độ điểm M thuộc d sao cho MOA cân tại đỉnh O ĐS: 1) (P): x – y + 2z – 6 = 0 2) KD-2008: Cho Viết pt mặt cầu đi qua 4 điểm A, B, C, D Tìm tọa độ tâm đường tròn ngoại tiếp ABC ĐS: 1) x2 + y2 + z2 – 3x – 3y – 3z = 0 2) H(2; 2; 2) KB-2008: Cho Viết pt mp(ABC) Tìm tọa độ M thuộc mp có pt: và ĐS: 1) (ABC): x + 2y – 4z + 6 = 0 2)M(2; 3; -7) KA-2008: Cho Tìm tọa độ hình chiếu của A trên d Viết pt mp chứa d sao cho khoảng cách từ A đến lớn nhất ĐS: 1) H(3; 1; 4) 2) : x – 4y + z – 3 = 0 CĐ-2009: Cho . Viết pt mp(P) đi qua , vuông góc 2 mp (P1) và (P2). ĐS: (P): 4x – 5y + 2z – 1 = 0 KD-2009: Cho . Tìm tọa độ D thuộc (AB) sao cho CD song song với (P). ĐS: D(5/2; 1/2; -1) KB-2009: Cho tứ diện ABCD có . Viết pt (P) qua A, B sao cho ĐS: (P): 4x + 2y + 7z – 15 = 0, (P): 2x + 3z – 5 = 0 KA-2009: Cho . CMR (P) cắt (S) theo một đường tròn. Xác định tọa độ tâm và bán kính của đường tròn đó. ĐS: d = 3 < R; H(3; 0; 2), r = 4 KD-2010: Cho . Viết pt mp(R) vuông góc (P) và (Q) sao cho khoảng cách từ O đến mp(R) bằng 2. ĐS: KB-2010: Cho . Tìm b, c biết (ABC) vuông góc (P) và khoảng cách từ O đến (ABC) bằng ĐS: b = c = 1/2 KA-2010: Cho . Gọi C là giao giữa và (P), điểm M thuộc . Tính khoảng cách từ M đến (P), biết . ĐS: KD-2011: Cho . Viết pt đi qua A, và cắt Ox. ĐS: : x = 1 + 2t; y = 2 + 2t; z = 3 + 3t KB-2011: Cho . Gọi I là giao giữa và (P). Tìm tọa độ M thuộc (P) sao cho: . ĐS: M(5; 9; -11), M(-3; -7; 13) KA-2011: Cho . Tìm tọa độ M thuộc (P) sao cho MA = MB = 3. ĐS: M(0; 1; 3), M(-6/7; 4/7; 12/7) KD-2012: Cho . Viết pt mặt cầu tâm I và cắt (P) theo một đường tròn có bán kính bằng 4. ĐS: (x – 2)2 + (y – 1)2 + (z – 3)2 = 25 KB-2012: Cho . Viết pt mặt cầu đi qua A, B và có tâm thuộc d. ĐS: (x + 1)2 + (y + 1)2 + (z – 2)2 = 17 KA-A1-2012: Cho . Viết pt mặt cầu (S) có tâm I và cắt d tại A, B sao cho IAB vuông tại I. ĐS: x2 + y2 + (z – 3)2 = 8/3 KA-A1-2013(CT-CHUẨN): Trong không gian với hệ tọa độ Oxyz, cho đường thẳng và điểm . Viết phương trình mặt phẳng (P) đi qua A và vuông góc với . Tìm tọa độ điểm M thuộc sao cho . ĐS: KA-A1-2013(CT-NC):Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng và mặt cầu phương trình . Chứng minh rẳng (P) tiếp xúc với (S). Tìm tọa độ tiếp điểm của (P) và (S). ĐS: M(3;1;2). KB-2013(CT-CHUẨN): Trong không gian với hệ tọa độ Oxyz, cho điểm A(3; 5; 0) và mặt phẳng . Viết phương trình đường thẳng đi qua A và vuông góc với (P). Tìm tọa độ điểm đối xứng của A qua (P). ĐS: ; B(-1; -1; 2). KB-2013(CT-NC): Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; -1; 1), B(-1; 2; 3) và đường thẳng . Viết phương trình đường thẳng đi qua A, vuông góc với hai đường thẳng AB và . ĐS: . KD-2013(CT-NC): Trong không gian với hệ tọa độ Oxyz, cho điểm A(-1; 3; -2) và mặt phẳng . Tính khoảng cách từ A đến (P). Viết phương trình mặt phẳng đi qua A và song song với (P). ĐS: KD-2013(CT-Chuẩn): Trong không gian với hệ tọa độ Oxyz, cho điểm A(-1; -1; -2), B(0; 1; 1) và đường thẳng . Tìm tọa độ hình chiếu vuông góc của A trên (P). Viết phương trình mặt phẳng đi qua A, B và vuông góc với (P). ĐS: , MỘT SỐ ĐỀ KIỂM TRA CHƯƠNG III CỦA TỈNH ĐĂK LĂK QUA CÁC NĂM ĐỀ 1 ĐỀ KIỂM TRA 1 TIẾT CHƯƠNG III HÌNH HỌC 12 NĂM HỌC 2009 – 2010 (Sở giáo dục Đăk Lăk) I/ PHẦN CHUNG CHO TẤT CẢ HỌC SINH (7điểm) Bài 1.(3 điểm) Cho hai điểm A(1; 2; 3) và B(3; 1; 1) 1/ Viết phương trình mặt phẳng đi qua điểm A và có là một véc tơ pháp tuyến. 2/ Viết phương trình mặt cầu có tâm A và đi qua điểm B. Bài 2. (4 điểm) Cho mặt cầu (S) có phương trình: x2 + y2 + z2 + 2x – 6y – 15 = 0 và mặt phẳng (P): x + 2y + 2z + 4 =0 1/ Xác định tọa độ tâm I và bán kính của mặt cầu (S). 2/ Chứng tỏ mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn và tính bán kính r của đường tròn đó. 3/ Viết phương trình mặt phẳng (Q) song song với trục Oy, vuông góc với mặt phẳng (P) và tiếp xúc với mặt cầu (S). II/ PHẦN TỰ CHỌN (3 điểm) Phần 1: ( Theo chương trình chuẩn) Bài 3a. (3 điểm) Cho tam giác MNP biết M(1; 2; 3), N(0; 3; 2), P(-2; -1; -3). 1/ Viết phương trình mặt phẳng (MNP). 2/ Viết phương trình mặt cầu có tâm nằm trên trục hoành và đi qua hai điểm M, N. Phần 2: ( Theo chương trình nâng cao) Bài 3b. (3 điểm) Cho tứ diện EFGH biết E(1; 2; 3), F(5; 1; 0), G(2; 5; -1), H(2; -1; 1). 1/ Viết phương trình mặt phẳng (EFG). 2/ Viết phương trình mặt cầu có tâm nằm trên trục hoành, đi qua điểm H và tiếp xúc với mặt phẳng (EFG). -------HẾT-------- ĐỀ 2 SỞ GD&ĐT ĐĂK LĂK ĐỀ KIỂM TRA HÌNH HỌC 12 – CHƯƠNG III Năm học 2010 – 2011 Thời gian làm bài: 45 phút không kể thời gian giao đề I. PHẦN CHUNG CHO T
File đính kèm:
- chuyen_de_phuong_phap_toa_do_trong_khong_gian_on_thi_TNTHPT.doc