Những bài toán thông minh (dùng cho học sinh phổ thông các cấp và các bậc cha mẹ học sinh)

24 BA MÔN THỂ THAO

Số học sinh của lớp là 25, trong lớp có 6 em xếp loại yếu- kém về môn toán, những học sinh tham gia thể thao đều đạt trung bình hoặc khá về môn toán, vậy số học sinh tham gia tập thể thao nhiều nhất là 19.

Không có ai tập cả 3 môn: suy ra số lượt tham gia tối đa là 38. Theo bài số lượt tham gia thể thao là

17 (xe đạp) + 13 (bơi) + 8 (bóng bàn) = 38 (lượt)

Vậy chỉ có thể: 19 đều tham gia thể thao, mỗi em tham gia đúng 2 nhóm sở thích. Từ đó dễ dàng trả lời các câu hỏi của bài toán:

- Không có học sinh đạt loại giỏi về xếp loại môn toán

- Trong số 19 em tham gia tập thể thao, những em vừa tập bơi, vừa tập bóng bàn thì không tập đua xe đạp, có 17 em tập đua xe đạp, vậy chỉ có 2 em vừa tập bơi vừa tập bóng bàn.

 

doc86 trang | Chia sẻ: dungnc89 | Lượt xem: 979 | Lượt tải: 0download
Bạn đang xem trước 20 trang mẫu tài liệu Những bài toán thông minh (dùng cho học sinh phổ thông các cấp và các bậc cha mẹ học sinh), để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
ông sẽ thưởng cho cháu cả. Giờ cháu hãy nhắm mắt lại	một	lát	nhé.
Chưa đầy 1 phút ông bảo bé Ngọc mở mắt ra và nói;
Đây là 5 hộp 5 màu: trắng, đen, đỏ, xanh da trời và xanh lá cây. Bóng cũng có 5 màu như thế, mỗi màu 2 bóng. Ông đã bỏ vào mỗi hộp 2 bóng; nhưng màu của bóng không theo màu của hộp. Nếu cháu nói được màu bóng trong các hộp thì cháu rất thông minh và ông sẽ thưởng cho cháu.
Ôi thế thì khó lắm, cháu chịu thôi. Bé Ngọc lo lắng nói.
Cháu hãy bình tĩnh, ông còn cho cháu biết thêm nhiều điều nữa cơ mà. Cháu chú ý nhé:
+ Mỗi bóng đều không giống màu của hộp đựng nó (1)
+ Bóng xanh da trời không ở trong hộp đỏ (2)
+ Một hộp màu "trung tính" đựng bóng đỏ và bóng xanh lá cây (ông giải thích: màu "trung tính" là trắng hoặc đen) (3)
+ Hộp màu đen đựng bóng màu "lạnh" (ông giải thích:	màu	"lạnh"
là màu xanh da trời hoặc xanh lá cây) (4)
+ Một hộp đựng bóng trắng và bóng xanh da trời (5)
+ Hộp màu xanh da trời đựng 1 bóng đen (6).
Bé Ngọc tập trung suy nghĩ, cuối cùng đã xác định được đúng màu bóng trong các hộp. Mời bạn hãy thử làm xem.
80 Bài toán thông minh
WWW.VNMATH.COM
PHẦN II: HƯỚNG DẪN LỜI GIẢI VÀ TRẢ LỜI
BA NHÀ THÔNG THÁI
Nhà thông thái đó đã suy luận như sau:
Ai cũng cười vì tưởng trán mình không nhọ, hai người kia cười nhau còn mình thì cười họ.
Thế nhưng, nếu trán tôi không nhọ thì hai người kia đều sẽ phát hiện được ngay trán mình bị nhọ. Chẳng hạn người thứ ba, khi thấy người thứ hai cười anh ta biết ngay là cười anh ta chứ không phải cười tôi (vì tôi không bị nhọ).
Trong thực tế hai người kia đều cười và không phát hiện ra trán mình bị nhọ. Vậy trán tôi cũng bị nhọ.
HAI CHỊ EM SINH ĐÔI
Kết quả: Đầu tiên tôi nói chuyện với cô Nhị, sau đó với cô Nhất. Tôi gặp họ vào thứ ba.
Thật vậy:
Từ câu trả lời của cô gái đầu ("hôm qua chủ nhật", ta nhận thấy nếu câu đó đúng, nghĩa là hôm đó thứ hai, mà nói đúng vào thứ hai thì chỉ là cô Nhị. Do vậy cáu trước đó: "Tôi là Nhất" cũng là đúng, hay cô đó là cô Nhất. Đã xảy ra điều vô lý: cô gái đầu vừa là Nhất, vừa là Nhị. Vậy câu
WWW.VNMATH.COM
41
"Hôm qua chủ nhật" là sai, và câu trước đó: "Tôi là Nhất" cũng sai. Ta được một kết quả: Cô gái đầu là Nhị.
Ngày tôi gặp hai cô là ngày cô Nhị nói sai. Vậy chỉ là một trong 3 ngày thứ ba, thứ năm, thứ bảy (1).
Cô gái sau là cô Nhất. Cô ta nói sai vào những ngày: thứ hai, thứ ba và thứ tư. Do đó câu trả lời "Ngày thứ tư tôi luôn luôn nói thật" là sai. Vậy là ngày tôi gặp hai cô là ngày cô Nhất nói sai (2).
Từ (1) và (2) ta được ngày đó là thứ ba.
CỤ GIÀ NÓI THẦM ĐIỀU GÌ?
Đáp án:
Thông qua việc làm của cụ già và hành động 2 kỵ sĩ phi như bay về đích ta thấy một khả năng có thể mà cụ già đã nói thầm với từng kỵ sĩ trước khi buông tay họ ra là: "Hãy nhảy lên ngựa của đối phương mà phi về đích trước". Và như thế, khi cụ già buông tay họ ra thì ai nấy đều chạy nhanh đến ngựa của người kia, nhảy lên và phóng về đích trước, cốt sao ngựa mình về sau.
	'	 	
DU KHÁCH ĐANG Ở ĐÂU?
Đáp án:
Người khách có thể đặt câu hỏi đối với người đầu tiên mà anh ta gặp như sau: "Ngài là người của thành phố này phải không?":
Nếu người khách đang ở thành phố A, thì luôn nhận được câu trả lời "Vâng", và nếu đang ở thành phố B thì luôn nhận được câu trả lời "Không".
Thật vậy: Khi người khách đang ở thành phố A, người trả lời là dân thành phố A thì anh ta trả lời là "Vâng". Còn người trả lời là dân thành phố B thì anh ta sẽ nói dối, cũng là "vâng". Khi người khách đang ở thành phố B cũng lập luận tương tự.
80 Bài toán thông minh
WWW.VNMATH.COM
42
QUÂN XANH, QUÂN ĐỎ
Khi người phụ trách hỏi An: "Em là quân gì ?", thì An chỉ có thể trả lởi: "Em quân đỏ". Thật vậy, nếu An quân đỏ thì sẽ trả lời đúng "Em quân đỏ", còn nếu là quân xanh thì sẽ trả lời sai cũng là "Em quân đỏ".
Từ đó suy ra ngay Dũng quân đỏ, Cường quân xanh.
ĐẠO LUẬT TÀN ÁC
Khi người lính hỏi: "Vì sao anh tới đây?", nếu người nông dân trả lời: "Tôi đến đây để anh treo cổ tôi lên", thì người lính sẽ không biết xử trí ra sao với người nông dân theo đạo luật của nhà vua.
Thật vậy:
Nếu đem treo cổ, nghĩa là người nông dân nói đúng, theo đạo luật của nhà vua phải dìm anh ta xuống nước.
Nếu đem dìm xuống nước. Nghĩa là người nông dân nói sai, theo đạo luật nhà vua lại phải đem treo cổ.
Đằng nào cũng khó xử cả.
BỨC CHÂN DUNG AI?
Người trong bức chân dung là con của anh Trung.
Thật vậy, bố của người đang trả lời các bạn (chính là Trung) chỉ có một người con trai duy nhất. Vậy người con trai duy nhất đó là Trung. Suy ra Trung là bố người trong ảnh.
ANH THỢ CẠO TRONG THÔN
Mâu thuẫn nảy sinh từ chính định nghĩa khái niệm anh thợ cạo. Định nghĩa không chỉ rõ anh thợ cạo phải làm gì đối với bản thân anh ta.
80 Bài toán thông minh
WWW.VNMATH.COM
43
Ghi chú: Đây là một nghịch lý (loại nghịch lý Russel) trong những nghịch lý của lý thuyết tập hợp (kể cả câu trả lời ở bài 6). Bạn đọc có thể tham khảo trong cuốn sách "Lý thuyết tập hợp là gì" của tác giả Hoàng Tuỵ, Nhà xuất bản Giáo dục, 1964.
THÀNH CÔNG CỦA TUỔI TRẺ
Ta có thể giải thích sự thành công của người bạn nhỏ như sau:
Ký hiệu hai người bạn chơi cờ giỏi là A và B. Trên bàn cờ với A người bạn nhỏ đi quân trắng thì bên bàn cờ với B cậu ta đi quân đen. Khi A đi thế nào thì cậu ta đi đúng như thế trên bàn cờ với B, và đợi cho B đi, cậu ta lại đi đúng như B trên bàn cờ với A. Cuộc chơi cờ được lặp lại như vậy cho tới khi kết thúc.
Thực ra mọi diễn biến trên hai bàn cờ giống hệt nhau. Người bạn nhỏ chỉ làm khâu trung gian để A và B chơi với nhau. Nếu A thắng thì cậu ta thắng B và ngược lại. Nếu hoà với một người thì cũng hoà với người kia.
NÓI TIÊN TRI
Người triết gia đã xác định các thần như sau:
Thần bên trái không thể là thần Sự Thật vì đã nói thần ngồi giữa là thần Sự Thật. Thần ngồi giữa cũng không thể là thần Sự Thật vì đã nói mình là thần Mưu Mẹo. Vậy thần bên phải là thần Sự Thật. Từ đó suy ra thần ngồi giữa là thần Lừa Dối và thần bên trái là thần Mưu Mẹo.
NGƯỜI THÔNG MINH NHẤT
Người thắng cuộc (người thông minh nhất) là người suy nghĩ nhanh hơn những người khác như sau:
Giả sử tôi đội mũ đen, hai người kia đều nhìn thấy và suy nghĩ "Nếu mình cũng đội mũ đen thì người kia (người thứ ba) sẽ biết và nói ngay anh
80 Bài toán thông minh
WWW.VNMATH.COM
44
ta đội mũ trắng. Thế nhưng anh ta không nói gì, nên mình không phải đội mũ đen mà là mũ trắng". Vậy tôi đội mũ đen thì hai người kia sẽ biết và nói ngay được trên đầu họ mũ gì. Đằng này hai người kia đều im lặng, nên tôi không thể đội mũ đen mà là mũ trắng.
THỬ TÀI ĐOÁN MŨ
Dựa vào những biểu hiện của An và Minh, Tuấn có thể xác định được màu mũ trên đầu mình bằng suy đoán như sau:
Trong 5 mũ mang ra có 2 mũ trắng. An ngồi dưới cùng mà không biết mình đội mũ gì, vậy mũ của Minh và Tuấn không cùng là màu trắng (nhiều nhất là một mũ trắng).
Nếu Tuấn đội mũ trắng thì từ câu trả lời của An, Minh sẽ biết ngay là mình đội mũ đen. Đằng này Minh cũng không biết. Từ đó Tuấn xác định được mũ trên đầu mình là màu đen.
CHỌN HOÀNG THÁI TỬ
Trong 4 chàng trai ít ra phải có 3 người đội mũ miện vàng, vì nếu không như vậy, một người đội mũ miện vàng sẽ nhìn thấy số mũ miện vàng nhiều hơn và không đứng lên.
Vậy số mũ miện vàng là 3 hoặc 4.
Nếu số mũ miện bạc là 3 thì một trong 3 chàng trai đội mũ miện vàng sẽ suy đoán ra ngay mũ miện vàng trên đầu mình bằng cách như sau: "Nếu tôi đội mũ miện bạc thì số mũ miện bạc là 2 và những người đội mũ miện vàng kia sẽ không đứng lên. Đằng này tất cả đã đứng lên. Vậy trên đầu tôi là mũ miện vàng".
Vì sau hồi lâu mới có người lên tiếng, nên số mũ miện vàng phải là
Chàng trai thông minh nhất đã suy đoán được mũ miện vàng trên đầu mình bằng cách sau: "Ba người kia đội mũ miện vàng, nếu tôi đội mũ miện bạc thì ắt có người suy đoán được ngay (theo cách trên) rằng anh ta đội mũ miện vàng. Nhưng họ đều đứng nguyên im lặng. Vậy trên đầu tôi là
80 Bài toán thông minh
WWW.VNMATH.COM
45
mũ miện vàng chứ không phải bạc.
CHUYỆN LY KỲ TRÊN TÀU HỎA
Ta lần lượt xét các khả năng có thể như sau:
Giả sử trong toa chỉ có 1 người nhọ mặt: Người bị nhọ tìm khắp trong toa không thấy ai bị nhọ nên biết ngay là mình bị nhọ và đi rửa ngay lần tàu đứng đầu tiên. Vậy số người bị nhọ phải nhiều hơn 1.
Giả sử trong toa có 2 người bị nhọ mặt: Mỗi người bị nhọ đều nhìn thấy một người bị nhọ, vì thế lần tàu dừng thứ nhất không có ai đi rửa cả. Sau đó cả hai đều phát hiện ra mình bị nhọ (vì nếu mình không, anh kia đã đi rửa ở lần tàu dừng đầu tiên rồi) và cả hai đều đi rửa ở lần tàu dừng thứ hai. Vậy số người bị nhọ lớn hơn 2.
Giả sử trong toa có 3 người bị nhọ: Mỗi người bị nhọ đều nhìn thấy
người bị nhọ. Vì biết suy đoán đúng nên đều chờ xem 2 người kia có đi rửa ở lần tàu dừng thứ 2 hay không. Khi thấy 2 người kia đều không đi rửa, cả 3 đều phát hiện ra mình bị nhọ và đi rửa ở lần tàu dừng thứ ba.
Giả sử trong toa có 4 người bị nhọ mặt: Lập luận tương tự như trường hợp C, suy ra cả 4 người đều bị nhọ đều đi rửa ở lần tàu dừng thứ tư. Giả thiết bài toán sau lần tàu dừng thứ tư mới hết người bị nhọ. Vậy trong toa có 4 người bị nhọ.
NGƯỜI QUEN TRONG HỘI NGHỊ
Trong hội nghị số người quen của mỗi người là một số nguyên không âm. Ta hãy cộng tất cả các số đó lại. Vì mỗi cặp (2 người) quen nhau được tính 2 lần nên tổng đó là một số chẵn. Từ đó suy ra các số lẻ trong tổng phải là chẵn, ta có điều cần phải chứng minh.
80 Bài toán thông minh
WWW.VNMATH.COM
46
NHÓM 6 NGƯỜI
Ký hiệu A là một thành viên của nhóm.
Giả sử có 3 người khách quen A. Nếu trong số 3 người có 2 người quen nhau, suy ra A và 2 người đó quen nhau từng đôi. Ngược lại, trong 3 người đó không có 2 người nào quen nhau, thì 3 người đó thoả mãn khả năng thử hai của bài toán - có 3 người không quen nhau từng đôi.
Giả sử không có tới 3 người quen A, số người khác A là 5, vậy có ít ra 3 người không quen A. Nếu giữa họ có 2 người không quen nhau thì 2 người đó và A thoả mãn khả năng thứ hai của bài toán. Ngược lại trong 8 người đó không có 2 người không quen nhau, thì 3 người đó quen nhau từng đôi - xảy ra khả năng thứ nhất của bài toán.
Vậy bài toán đã được chứng minh.
CHỈ CÓ MỘT NGƯỜI QUEN
Ta có A quen B thì B cũng quen A.
Giả sử trong hội nghị này A có số người quen lớn nhất (k người quen).
Từ giả thiết bài toán ta có: số người quen của các đại biểu quen A là những số khác nhau, tối thiểu là 1 vì ít ra là quen A, tối đa là k vì A có số người quen lớn nhất mới là k. Suy ra có đúng một đại biểu trong số các đại biểu quen A có duy nhất 1 người quen.
Vậy trong hội nghị này có ít ra một đại biểu duy nhất 1 người quen.
THÔNG BÁO CỦA THƯ VIỆN
Người phụ trách thư viện có thể chọn hai thời điểm thông báo thoả mãn yêu cầu bài toán là:
t1. Thời điểm người ra về đầu tiên đang làm thủ tục để về.
t2. Thời điểm người đến thư viện cuối cùng vừa tới và sau đó người phụ trách thư viện treo biển hết giờ vào thư viện.
80 Bài toán thông minh
WWW.VNMATH.COM
47
Trường hợp t1 nhỏ hơn t2: Giả sử có độc giả nào đó đến thư viện trong ngày mà lại không có mặt cả hai thời điểm trên, nghĩa là anh ta đến sau thời điểm t1 và ra về trước thời điểm t2. Điều đó cũng có nghĩa: anh ta, người ra về đầu tiên và người đến thư viện cuối cùng không có 2 người nào gặp nhau trong thư viện, trái với giả thiết bài toán. Vậy t1 và t2 thoả mãn yêu cầu bài toán.
Trường hợp t1 không nhỏ hơn t2: Người phụ trách thư viện chỉ cần thông báo một lần ở một thời điểm nào đó giữa t1 và t2.
THI ĐẤU BÓNG BÀN
Bài toán có thể giải bằng nhiều cách, chẳng hạn:
Cách 1: Giả sử A là vận động viên thắng nhiều nhất. Nếu A không thoả mãn bài toán thì khi đó tồn tại vận động viên B không thua A và không thua cả những vận động viên thua A, suy ra B thắng nhiều hơn A, trái với giả thuyết về A. Vậy A thoả mãn bài toán.
Cách 2: Tất cả các vận động viên ở trong một phòng. Một vận động viên dẫn tất cả những vận động viên thua anh ta ra ngoài (có thể không dẫn ai - anh ta chỉ ra một mình). Nếu trong phòng còn người thì một vận động viên nào đó lại làm như vừa nêu... Sự việc được tiếp diễn như vậy cho tới khi trong phòng không còn ai hoặc chỉ còn một người.
Vận động viên ở vai trò người dẫn là người thắng những vận động viên anh ta dẫn ra và cả những người ở vai trò người dẫn ra trước đó. Nếu trong phòng không còn ai thì người dẫn cuối cùng thoả mãn bài toán.
XĂNG VÀ DẦU
Sau 3 lần trao đổi, trọng lượng dung dịch ở mỗi can không đổi. Trong can xăng đã có một lượng xăng được thay thế bằng dầu. Lượng đầu trong can xăng đúng bằng trọng lượng xăng đã lấy ra, lượng xăng đó nằm hoàn toàn trong can dầu. Vậy trọng lượng xăng ở trong can dầu đúng bằng lượng dầu ở can xăng.
80 Bài toán thông minh
WWW.VNMATH.COM
48
BÁC LOAN, BÉ HẰNG và bà hạnh
/ •
Gọi tuổi của bác Loan là X và tuổi của bé Hằng là Y. Theo giả thuyết bài toán, bà Hạnh X + Y tuổi khi bác Loan Y tuổi. Suy ra bà Hạnh hơn bác Loan X tuổi. Vậy khi bà Hạnh bằng tuổi bác Loan bây giờ thì bác Loan vừa mới sinh. Còn bây giờ bà Hạnh gấp đôi tuổi bác Loan.
TUỔI BA CHÀNG TRAI
Gọi X là số tuổi của Trung hơn Nghĩa..
Theo điều kiện bài toán ra ta có:
Tuổi Trung + X = 2(tuổi Tùng + X)
Suy ra, tuổi Trung = 2 (tuổi Tùng) + X Mặt khác: Tuổi Trung = Tuổi Nghĩa + X
Từ đó suy ra: Trung là người nhiều tuổi nhất, Tùng là người ít tuổi nhất.
CÓ BAO NHIÊU CHÀNG TRAI?
Ta vẽ ba vòng tròn giao nhau, mỗi vòng tròn biểu thị một nhóm sở thích: bóng đá, bóng chuyền, cầu lông.
80 Bài toán thông minh
WWW.VNMATH.COM
49
Có 1 em tham gia cả 3 nhóm, ta điền 1 vào phần chung của cả 3 vòng tròn. Có 2 em vừa bóng chuyền và cầu lông, nhưng đã có 1 em tham gia cả 3 nhóm, vậy chỉ có 1 em tham gia đúng 2 nhóm sở thích vừa nêu. Ta điền 1 vào phần chung của 2 vòng này ở phần không chung với vòng tròn đá bóng.
Lập luận tương tự ta có: 3 em tham gia đúng 2 sở thích bóng đá và bóng chuyền, 2 em tham gia đúng 2 sở thích bóng đá và cầu lông, 1 em chỉ tham gia bóng đá, 1 em chỉ tham gia bóng chuyền 1 em chỉ tham gia cầu lông. Ta điền các số này vào các phần tương ứng (như hình vẽ).	Từ đó	dễ
dàng xác định được số chàng trai của lớp là 10.
BA MÔN THỂ THAO
Số học sinh của lớp là 25, trong lớp có 6 em xếp loại yếu- kém về môn toán, những học sinh tham gia thể thao đều đạt trung bình hoặc khá về môn toán, vậy số học sinh tham gia tập thể thao nhiều nhất là 19.
Không có ai tập cả 3 môn: suy ra số lượt tham gia tối đa là 38. Theo bài số lượt tham gia thể thao là
17 (xe đạp) + 13 (bơi) + 8 (bóng bàn) = 38 (lượt)
Vậy chỉ có thể: 19 đều tham gia thể thao, mỗi em tham gia đúng 2 nhóm sở thích. Từ đó dễ dàng trả lời các câu hỏi của bài toán:
Không có học sinh đạt loại giỏi về xếp loại môn toán
Trong số 19 em tham gia tập thể thao, những em vừa tập bơi, vừa tập bóng bàn thì không tập đua xe đạp, có 17 em tập đua xe đạp, vậy chỉ có 2 em vừa tập bơi vừa tập bóng bàn.
HỘI ĐỌC BÁO
Gọi số thành viên của hội là n, số tạp chí họ đặt là m.
Số các nhóm 2 tạp chí khác nhau có thể thành lập từ m	tạp	chí	là:
m(m-1)
2
80 Bài toán thông minh
WWW.VNMATH.COM
50
Theo bài ta có: 2n = 3m và m(m 1) = n (*)
Ta cần xác định số tự nhiên n,m thoả mãn (*), hay thoả mãn: 2n = 3m; m(m — 1) = 2n.
Suy ra: 3m = m(m — 1).
Giải ra ta được: m = 4 suy ra n = 6.
Vậy số thành viên của hội là 6 và số tạp chí họ đặt là 4.
NHÃN HIỆU NÓI DỐI
Ta hãy rút một bóng từ ngăn có nhãn hiệu Trắng - Đỏ.
Có 2 khả năng:
Bóng rút ra màu đỏ: Vì nhãn sai với bóng trong ngăn, nên trong ngăn chỉ có thể là 2 bóng đỏ. Ngăn có nhãn Trắng-Trắng chỉ có thể chứa 1 bóng đỏ 1 bóng trắng, suy ra ngăn có nhãn Đỏ-Đỏ chứa 2 bóng trắng.
Bóng rút ra màu trắng: Trong ngăn này có chứa bóng màu trắng, mà bóng bên trong sai với nhãn bên ngoài là Trắng-Đỏ, nên chỉ có thể chứa 2 bóng trắng. Ngăn có nhãn Đỏ-Đỏ chỉ có thể chứa 1 bóng trắng 1 bóng đỏ, suy ra ngăn có nhãn trắng-trắng chứa 2 bóng đỏ.
Vậy bằng cách rút như trên ta hoàn toàn xác định được các bóng chứa trong mỗi ngăn.
CHỈ MỘT LẦN CÂN
Ta đánh số các ví từ 1 đến 10.
Lấy ra từ ví số 1 một đồng, từ ví 2 hai đồng... từ ví 9 chín đồng, ví 10 không lấy đồng nào cả. Đem cân gập cả 45 đồng tiền đã lấy ra.
Nếu cân được đúng 450 gam thì ví 10 đựng các đồng tiền giả.
Nếu cân được 450 gam cộng một số lẻ gam thì số gam lẻ ở đó chính là số thứ tự của ví đựng tiền giả mà ta cần xác định.
80 Bài toán thông minh
WWW.VNMATH.COM
51
TÌM ĐỒNG TIỀN GIẢ
Đặt mỗi đĩa cân 9 đồng tiền, nếu cân thăng bằng thì đồng tiền giả nằm trong số 9 đồng tiền còn lại. Nếu cân không thăng bằng thì đồng tiền giả nằm trong số 9 đồng bên nhẹ hơn.
Đặt mỗi đĩa cân 3 đồng lấy từ 9 đồng chứa tiền giả. Xem xét như trên ta xác định được 3 đồng trong đó có đồng tiền giả.
Đặt mỗi bên cân 1 đồng lấy từ 3 đồng có chứa tiền giả. Nếu cân thăng bằng thì đồng tiền giả là đồng còn lại. Nếu cân không thăng bằng thì đồng tiền giả là đồng nhẹ hơn.
BẰNG BA LẦN CÂN
Câu (A): Ta đánh số các đồng tiền từ 1 đến 8. Cân lần 1: Một bên đĩa đặt đồng 1 và đồng 2, bên đĩa kia đặt đồng 3 và đồng 4. Ta có 2 khả năng sau:
Cân không thăng bằng: Đồng tiền giả nằm trong 4 đồng đang cân.
Cân lần 2: Một bên cân để đồng 1 và 2, bên kia để đồng 5 và 6 (tiền thật). Có 2 khả năng:
Cân thăng bằng: đồng tiền giả là 3 hoặc 4 (a).
Cân không thăng bằng: đồng tiền giả là 1 hoặc 2 (b).
Sau lần cân này ta đã biết đồng tiền giả nặng hay nhẹ.
Cân lần 3: Một bên để đồng 3 hoặc 4 (đồng 1 hoặc 2 đối với trường hợp (b), còn bên kia để đồng tiền thật. Cân thăng bằng hay không thăng bằng ta đều xác định được đồng tiền giả và biết nó nặng hay nhẹ hơn đồng tiền thật.
Cân thăng bằng: Đồng tiền giả nằm trong 4 đồng tiền ngoài (đồng
6, 7 và 8).
Cân lần 2: Một bên để các đồng 1, 2 và 3 (tiền thật), bên kia để các đồng 5, 6 và 7. Có hai khả năng:
Cân thăng bằng: đồng tiền giả là đồng 8. Cân lần 3 so sánh đồng 8
80 Bài toán thông minh
WWW.VNMATH.COM
52
với một đồng tiền thật, ta xác định được đồng tiền giả nặng hơn hay nhẹ hơn đồng tiền thật.
Cân không thăng bằng: đồng tiền giả nằm trong các đồng 5, 6 và 7. Ta cũng biết đồng tiền giả nặng hơn hay nhẹ hơn đồng tiền thật.
Cân lần 3: một bên để đồng 5, bên kia để đồng 6. Cân thăng bằng hay không thăng bằng ta đều xác định được đồng tiền giả.
Câu (B): Ta chia 12 đồng tiền thành 3 nhóm, mỗi nhóm 4 đồng.
Cân lần 1: Mỗi bên cân để một nhóm. Có 2 khả năng:
Cân thăng bằng: đồng tiền giả nằm trong nhóm thứ ba (bốn đồng nằm ngoài). Ta đánh số bốn đồng tiền này và cân tiếp 2 lần sau như trường hợp "II. Cân thăng bằng" của câu A):
Cân không thăng bằng: đánh số bên nặng là các đồng 1, 2, 3 và 4, còn bên nhẹ là các đồng 5, 6, 7 và 8. Ta cân tiếp cho riêng trường hợp này như sau:
Cân lần 2: Một bên để đồng 1, 2 và 5, bên kia để đồng 3, 4 và 6. Có 2 khả năng.
Cân thăng bằng: đồng tiền giả là đồng 7 hoặc 8 và nhẹ hơn đồng tiền thật. Cân lần 3: một bên để đồng 7, bên kia để đồng 8, đồng nhẹ hơn là đồng giả.
Cân không thăng bằng: Ta xét 2 trường hợp như sau:
Bên các đồng 1, 2 và 5 nặng hơn:
+ Đồng tiền giả nặng hơn là đồng 1 hoặc 2.
+ Đồng tiền giả nhẹ hơn, là đồng 6.
Cân lần 3: Để đồng 1 một bên, đồng 2 bên kia. Cân thăng bằng thì đồng tiền giả là đồng 6 và nhẹ hơn đồng thật. Cân không thăng bằng thì đồng nặng hơn là đồng giả.
+ Bên đồng 1, 2 và 5 nhẹ hơn: thực hiện như trường hợp nặng hơn.
80 Bài toán thông minh
WWW.VNMATH.COM
53
TÌM PHẾ PHẨM
Cân lần 1: Để bên trái sản phẩm mẫu và 1 trong 5 sản phẩm đang xét. Để bên phải 2 trong 4 sản phẩm còn lại. Có 3 khả năng: cân thăng bằng, bên phải nặng hơn và bên phải nhẹ hơn.
Cân lần 2: Xét riêng từng trường hợp.
Bên phải nặng hơn: Lấy 2 sản phẩm ở bên phải để mỗi sản phẩm vào một bên cân.
Nếu thăng bằng thì phế phẩm ở bên trái trong lần cân 1 cùng với sản phẩm mẫu và nhẹ hơn sản phẩm thật.
Nếu cân không thăng bằng thì sản phẩm nào nặng hơn là phế phẩm.
Bên phải nhẹ hơn: Thực hiện tương tự như trên.
Cân thăng bằng: Phế phẩm là 1 trong 2 sản phẩm bên ngoài. Lấy
trong 2 sản phẩm đó để một bên cân, bên kia để sản phẩm mẫu. Cân thăng bằng thì phế phẩm là sản phẩm còn bên ngoài (ta không xác định được nó nặng hay nhẹ hơn sản phẩm mẫu). Cân không thăng bằng thì phế phẩm là sản phẩm đang cân.
CẦN BAO NHIÊU QUẢ CÂN?
Hiển nhiên cần quả cân 1kg để cân vật 1kg.
Để cân vật 2kg có thể dùng 1 q

File đính kèm:

  • docNHUNG BAI TOAN HAY.doc