Giáo án môn Đại số 8 - Tiết 19, 20

1.1.Kiến thức:

HS biết: Hệ thống lại các kiến thức cơ bản trong chương

HS hiểu : vận dụng các kiến thức đ học vo giải tốn

1.2 Kĩ năng:

HS thực hiện được: Rèn kĩ năng giải thích các loại bài tập.

HS thực hiện thnh thạo: Các BT của chương I nhân đơn thức, đa thức với đa thức phân tích đa thức thành nhân tử, vận dụng được 7 HĐT vào giải toán

1.3 Thái độ:

Thĩi quen: Có được tính hệ thống và ngăn nắp.

Tính cch: cĩ tính độc lập, sáng tạo

 

doc6 trang | Chia sẻ: tuongvi | Lượt xem: 1352 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Giáo án môn Đại số 8 - Tiết 19, 20, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Tuaàn: 10
Tieát:19
ND: 22/10/2014 OÂN TAÄP CHÖÔNG I
1 - MUÏC TIEÂU:
Kieán thöùc:
HS biết: Heä thoáng laïi caùc kieán thöùc cô baûn trong chöông
HS hiểu : vận dụng các kiến thức đã học vào giải toán
Kó naêng:
HS thực hiện được: Reøn kó naêng giaûi thích caùc loaïi baøi taäp.
HS thực hiện thành thạo: Các BT của chương I nhân đơn thức, đa thức với đa thức phân tích đa thức thành nhân tử, vận dụng được 7 HĐT vào giải toán
Thaùi ñoä:
Thói quen: Coù ñöôïc tính heä thoáng vaø ngaên naép.
Tính cách: có tính độc lập, sáng tạo
2 –NỘI DUNG HỌC TẬP:
 Kæ naêng giaûi caùc BT ôn tập chương I
3 – CHUAÅN BÒ:
 3.1 Gv: Baûng phuï, phaán maøu.
 3.2 Hs: Laøm caùc caâu hoûi vaø baøi taäp oân chöông moät, baûng nhoùm.
4 – TỔ CHỨC CÁC HOẠT ĐỘNG HỌC TẬP:
 4.1) OÅn ñònh toå chöùc vaø kieåm dieän:
 4.2) Kieåm tra mieäng: 
GV: Cho HS traû lôøi caùc caâu hoûi SGK (Nhaéc laïi kieán thöùc cuõ.)
4.3) Tiến trình bài học:
HOAÏT ÑOÄNG CUÛA Gv vaø Hs
NOÄI DUNG
HÑ1: 10 phút OÂn lí thuyeát
Mục tiêu
KT: HS ôn lại KT lý thuyết ở Chương I
Gv: Neâu caâu hoûi vaø yeâu caàu Hs traû lôøi
- Phaùt bieåu quy taéc nhaân ñôn thöùc vôùi ña thöùc vaø ghi toång quaùt.
Hs: Traû lôøi.
Gv: Phaùt bieåu quy taéc nhaân ña thöùc vôùi ña thöùc vaø ghi toång quaùt.
Hs: Traû lôøi.
Gv: Haõy vieát baûy HÑT ñaùng nhôù.
Hs: Traû lôøi.
Gv: Ghi saün 7 HÑT ñaùng nhôù vaøo baûng phuï sau ñoù yeâu caàu Hs phaùt bieåu baèng lôøi.
I- Lyù thuyeát:
 1/ Nhaân ñôn thöùc vôùi ña thöùc:
 A ( B + C) = A.B + A.C
 2/ Nhaân ña thöùc vôùi ña thöùc:
(A + B)(C + D) = A.C + A.D + B.C + B.D
 3/ Haèng ñaúng thöùc ñaùng nhôù:
(A + B)2 = A2 + 2AB + B2
(A - B)2 = A2 - 2AB + B2
A2 – B2 = (A – B)(A + B)
(A + B)3 = A3 + 3A2B + 3AB2 + B3
(A – B)3 = A3 - 3A2B + 3AB2 - B3
A3 + B3 = (A + B)(A2 – AB + B2)
A3 – B3 = (A – B)(A2 + AB + B2
HÑ2: 25 phút Thöïc haønh giaûi baøi taäp
Mục tiêu
KN: HS áp dụng lý thuyết Chương I để làm BT thành thạo
Gv: Cho 1 Hs leân baûng giaûi baøi 75(sgk/33):
Laøm tính nhaân :
a/ 5x2(3x2 – 7x + 2)
b/xy(2x2y – 3xy + y2).
Hs: Caû lôùp cuøng laøm baøi taäp. Sau khi Hs ôû baûng giaûi xong cho Hs khaùc nhaän xeùt baøi laøm cuûa baïn.
Gv: Tieáp tuïc cho hai Hs khaùc leâ baûng giaûi baøi 76(sgk/33) vaø caùc Hs coøn laïi giaûi vaøo taäp:
Laøm tính nhaân:
a/ (2x2 – 3x)(5x2 – 2x + 1)
b/ (x – 2y)(3xy + 5y2 + x)
Hs: Caû lôùp cuøng laøm baøi taäp. Sau khi Hs ôû baûng giaûi xong cho Hs khaùc nhaän xeùt baøi laøm cuûa baïn.
øGv: Hoaøn chænh baøi cho lôùp, cho ñieåm caùc Hs giaûi baøi ôû baûng.
Gv: Treo baûng phuï baøi taäp 77(sgk/33):
 Tính nhanh giaù trò cuûa bieåu thöùc:
a/ M = x2 + 4y2 – 4xy Taïi x = 18 ; y = 4
b/ N = 8x3 – 12x2y + 6xy2 – y3 taïi x = 6; 
y = -8
 Gv: Cho Hs leân baûng giaûi baøi 78(SGK/33):
Ruùt goïn bieåu thöùc sau:
a/ (x + 2)(x – 2) – (x – 3)(x + 1)
b/ (2x + 1)2 + (3x – 1)2 + 2(2x + 1)(3x – 1).
Hs: Caùc HS khaùc giaûi vaøo taäp sau ñoù nhaän xeùt baøi cuûa baïn.
Gv hoaøn chænh baøi vaø cho ñieåm.
Gv: Cho Hs hoaït ñoäng nhoùm
 Nhoùm : 1, 2, 3 giaûi caâu a,b
 Nhoùm : 4, 5, 6 giaûi caâu b, c.
II- Baøi taäp:
Baøi 75(SGK/33): 
 a/ 5x2(3x2 – 7x + 2)
 = 15x4 – 35x3 + 10x2
 b/xy(2x2y – 3xy + y2) 
= x3y2 – 2x2y2 + xy3
Baøi 76(SGK/33): 
 a/ (2x2 – 3x)(5x2 – 2x + 1)
 = 10x4 – 4x3 + 2x2 – 15x3 + 6x2 – 3x
 = 10x4 – 19x3 + 8x2 – 3x
 b/ (x – 2y)(3xy + 5y2 + x)
 = 3x2y + 5xy2 + x2 – 6xy2 – 10y3 – 2xy
 = 3x2y – xy2 +x2 – 10y3 – 2xy
 Baøi 77(SGK/33):
 a/ M = x2 + 4y2 – 4xy Taïi x = 18 ; y = 4
 Ta coù: M = x2 + 4y2 – 4xy
	 = (x – 2y)2
	 = (18 – 2.4)2
	 = 102
 	 = 100
 b/ N = 8x3 – 12x2y + 6xy2 – y3 taïi x = 6 ; 
y = -8
 Ta coù: N = 8x3 – 12x2y + 6xy2 – y3 
	= (2x – y)3
	= [2.6 – (- 8)]3
	= 203
	= 8 000
Baøi 78(SGK/33): 
a/ (x + 2)(x – 2) – (x – 3)(x + 1)
 = x2 – 4 – x2 – x + 3x + 3
 = 2x – 1
 b/ (2x + 1)2 + (3x – 1)2 + 2(2x + 1)(3x – 1)
 = [(2x + 1) + (3x – 1)]2
 = (5x)2 = 25x2
Baøi 79(SGK/33): Phaân tích ña thöùc thaønh nhaân töû.
 a/ x2 – 4 +(x – 2)2 = (x2 – 4) + (x – 2)2	
	= (x – 2)(x + 2) + (x – 2)2
	= (x – 2)(x + 2 + x – 2)
	= 2x(x – 2)
 b/ x3 – 2x2 + x – xy2 = x(x2 – 2x + 1 –y2
	 = x[(x2 – 2x + 1) –y2]
	 = x[(x – 1)2 – y2]
	 = x(x – 1 – y)(x – 1 + y).
c/ x3 – 4x2 -12x + 27 = (x3 + 27) – (4x2 + 12x)
 = (x + 3)(x2 – 3x + 9) – 4x(x + 3)
 = (x + 3)(x2 - 3x + 9 – 4x)
 = (x + 3)(x2 – 7x + 9).
4.4)Tổng kết: 
Gv: Neâu baøi hoïc kinh nghieäm:
* Baøi hoïc kinh nghieäm:
Ñeå tính nhanh giaù trò bieåu thöùc ta thöïc hieän theo hai böôùc sau:
Bieán ñoåi bieåu thöùc veà daïng goïn nhaát, deã tính nhaát, ít pheùp tính nhaát.
 - Thay giaù trò cuûa bieán baèng caùc soá ñaõ cho vaø thöïc hieän pheùp tính.
4.5) Höôùng daãn Học tập
a) Đối với bài học ở tiết này:
- OÂn laïi thuaät toaùn chia hai ña thöùc ñaõ saép xeáp, quy taéc chia ña thöùc cho ñôn thöùc, ñieàu kieän ñeå cho ña thuùc A chia heát cho ñôn thöùc B
- BTVN: 80, 81, 82, 83(sgk/33).
- Höôùng daãn baøi 81(SGK/33) : Tìm x, bieát:
	a/ x(x2 – 4) = 0
	b/ (x + 2)2 – (x – 2)(x + 2) = 0
	c/ x + 2x2 + 2x3 = 0
 Gv: Höôùng daãn Hs phaân tích veá traùi thaønh nhaân töû roài xeùt tích baèng 0 
b) Đối với bài học ở tiết tiếp theo:
Chuaån bị tiết sau ôn tập chương tiếp theo
5- PHỤ LỤC
Tuaàn:10
Tieát: 20
ND: 22/10/2014 OÂN TAÄP CHÖÔNG I (tt)
MUÏC TIEÂU:
1.1.Kieán thöùc:
HS biết: Heä thoáng laïi caùc kieán thöùc cô baûn trong chöông
HS hiểu : vận dụng các kiến thức đã học vào giải toán
Kó naêng:
HS thực hiện được: Reøn kó naêng giaûi thích caùc loaïi baøi taäp.
HS thực hiện thành thạo: Các BT của chương I nhân đơn thức, đa thức với đa thức phân tích đa thức thành nhân tử, vận dụng được 7 HĐT vào giải toán
1.3 Thaùi ñoä:
Thói quen: Coù ñöôïc tính heä thoáng vaø ngaên naép.
Tính cách: có tính độc lập, sáng tạo
2 –NỘI DUNG HỌC TẬP:
 Kæ naêng giaûi caùc BT ôn tập chương I
3 – CHUAÅN BÒ:
 3.1 Gv: Baûng phuï, phaán maøu.
 3.2 Hs: Laøm caùc caâu hoûi vaø baøi taäp oân chöông I, baûng nhoùm.
4 – TỔ CHỨC CÁC HOẠT ĐỘNG HỌC TẬP:
 4.1) OÅn ñònh toå chöùc vaø kieåm dieän:
 4.2) Kieåm tra mieäng: 
4.3) Tiến trình bài học:
HOAÏT ÑOÄNG CUÛA Gv vaø Hs
NOÄI DUNG
HÑ1: 10 phút
Mục tiêu
KN: HS áp dụng lý thuyết Chương I để làm BT thành thạo
Baøi taäp phaùt trieån tö duy
Gv: Chia baûng laøm 3 phaàn vaø cho 3 Hs ñoàng loaït giaûi baûng baøi 81(sgk/33):
Tìm x, bieát:
	a/ x(x2 – 4) = 0
	b/ (x + 2)2 – (x – 2)(x + 2) = 0
	c/ x + 2x2 + 2x3 = 0
Gv: Sau khi 3 Hs ôû baûng giaûi xong Gv cho Hs khaùc nhaän xeùt vaø hoaøn chænh baøi cho lôùp, cho ñieåm. 
Baøi 80(sgk/33): Laøm tính chia
a/ ( 6x3 – 7x2 – x + 2) : (2x + 1)
b/ ( x4– x3 + x2 + 3x ) : (x2 – 2x + 3 )
c/ (x2 – y2 + 6x + 9) : (x + y + 3).
Gv: Chia baûng laøm 3 phaàn vaø cho 3 Hs ñoàng loaït giaûi baûng baøi 80, hai caâu a, b seáùp thaønh baøi toaùn chia rieâng caâu c phaân tích ña thöùc bò chia.
3 Hs: Ôû baûng giaûi xong.
 Gv: Cho Hs khaùc nhaän xeùt vaø hoaøn chænh baøi cho lôùp, cho ñieåm.
HÑ2: 10 phút
Mục tiêu
KN: HS áp dụng lý thuyết Chương I để làm BT thành thạo
Baøi taäp phaùt trieån tö duy
Baøi 82(sgk/33):
c/m:
a/ x2 + 2xy + y2 + 1 > 0 vôùi moïi soá thöïc x vaø y
b/ x – x2 – 1 < 0 vôùi moïi soá thöïc x
Gv: Höôùng daãn cho Hs thöïc hieän caâu a sau ñoù cho Hs hoaït doäng nhoùm caâu b vaø cho moät ñaïi dòeân nhoùm trình baøi ôû baûng.
Hs: Leân baûng trình baøy.
HỌC SINH GIỎI
Baøi 83(SGK/33): 
 Tìm n ñeå 2n2 – n + 2 chia heát cho 2n + 1
 Gv: Cho moät Hs leân baûng thöïc hieän baøi toaùn chia
 2n2 – n + 2 2n + 1
- 2n2 + n	 n - 1
 0 - 2n + 2
 - - 2n - 1
 3
Gv: Caùc öôùc cuûa 3 laø bao nhieâu?
Hs: Traû lôøi.
BT 81(sgk/33):
a/ x(x2 – 4) = 0
 x(x – 2)(x +2) = 0
 x = 0 Hoaëc x – 2 = 0 Hoaëc x + 2 = 0
 x = 0 Hoaëc x = 2 Hoaëc x = -2.
b/ (x + 2)2 – (x – 2)(x + 2) = 0
 (x + 2)(x + 2 – x + 2) = 0
 4 (x + 2) = 0
 x + 2 = 0
 x = -2.
 c/ x + 2x2 + 2x3 = 0
 x(1 + 2x + 2x2) = 0
 x(x + 1) = 0
 x = 0 Hoaëc x + 1 = 0
 x = 0 Hoaëc	 x = - 1 
 x = 0 Hoaëc x = .
Baøi 80(sgk/33): 
a/ 6x3 – 7x2 – x + 2 2x + 1
 - 6x3 – 3x2 3x2 – 5x + 2
 - 10x2 – x + 2
 10x2 + 5x
	4x + 2
 - 4x - 2	
	 0
Vaäy: 6x3 – 7x2 – x + 2 = (2x + 1)( 3x2 – 5x + 2)
b/ x4– x3 + x2 + 3x	x2 – 2x + 3
 - x4 +2x3 – 3x2	 x2 + x
 x3 – 2x2 + 3x
 - x3 + 3x2 - 3x
 0
 Vaäy: x4– x3 + x2 + 3x = (x2 – 2x + 3)( x2 + x)
 c/ (x2 – y2 + 6x + 9) : (x + y + 3)
= [(x2 + 6x + 9) – y2]: (x + y + 3)
 = [(x + 3)2 – y2] : (x + y + 3)
 = [(x – y + 3)(x + y + 3)]: (x + y + 3)
 = x – y + 3.
Baøi 82(sgk/33) : 
 a/ x2 + 2xy + y2 + 1 > 0 vôùi moïi soá thöïc x vaø y
 Ta coù: x2 + 2xy + y2 + 1 = (x + y)2 + 1
 Vì (x + y)2 0 vôùi moïi x vaø y thuoäc R
Vaø 1 > 0
Vaäy: x2 + 2xy + y2 + 1 > 0
 b/ x – x2 – 1 < 0 vôùi moïi soá thöïc x
 Ta coù: x – x2 – 1 = - (x2 – x + 1 )
 = - (x2 -2 . x . + + ) = - [(x - )2 + ]
 Vì [(x - )2 + ] > 0 vôùi moïi xR
 Neân: - [(x - )2 + ] < 0 vôùi moïi x R
 Hay: x – x2 – 1 < 0 vôùi moïi soá thöïc x
 Baøi 83(SGK/33): 
 Tìm n ñeå 2n2 – n + 2 chia heát cho 2n + 1
 Ta coù : 2n2 – n + 2 chia heát cho 2n + 1 
khi 2n + 1 laø öôùc cuûa 3. 
Caùc Ö(3) =
 * 2n + 1 = -1 * 2n + 1 = 1 
 n = - 1	 n = 0
 * 2n + 1 = -3	 * 2n + 1 = 3
	 n = - 2	 n = 1
 Vaäy: 2n2 – n + 2 chia heát cho 2n + 1 khi 
 n 
4.4) Tổng Kết:
8A3
Gv: Yeâu caàu hs laøm Baøi taäp: Tìm a sao cho ña thöùc:
(x4 – x3 + 6x2 – x + a) chia heát cho x2 – x + 5
Gv: Ta coù: A = B.Q + R. Ña thöùc A chia heát cho ña thöùc B khi naøo?
 Hs: R = 0 vaø laøm baøi.
8A1, 8A2 nhắc lại phần lý thuyết của chương I
Gv: Neâu Baøi hoïc kinh nghieäm:
Hs: Nghe vaø ghi baøi.
Baøi laøm:
 x4 – x3 + 6x2 – x + a	x2 – x + 5
- x4 + x3 – 5x2	 x2 + 1
 x2 – x + a
 -x2 + x - 5
 a – 5
 Ñeå ña thöùc A chia heát cho ña thöùc B, thì ña thöùc dö phaûi baèng 0
	 R = 0 a – 5 = 0 a = 5
 Vaäy: a = 5, thì ña thöùc x4 – x3 + 6x2 – x + a chia heát cho x2 – x + 5.
* Baøi hoïc kinh nghieäm:
 - Ñeå f(x) chia heát (x – a) f(a) = 0
 - Ñeå xaùc ñònh heä soá a sao cho ña thöùc A(x) chia heát cho ña thöùc B(x) vôùi B(x) 0, thì ña thöùc dö R(x) = 0 .
5) Höôùng daãn Hoïc taäp:
a) Đối với bài học ở tiết này
 - OÂn taäp caùc caâu hoûi vaø caùc daïng baøi taäp cuûa chöông
b) Đối với bài học ở tiết tiếp theo:
 -Chuaån bò tieát sau kieåm tra 1 tieát chöông I.
 Đọc trước bài Phân thức đại số, trả lời câu hỏi: Thế nào là phân thức đại số
5- PHỤ LỤC

File đính kèm:

  • doctiet 19 20 dai so 8.doc