Giáo án Hình học 7 năm 2015 (chuẩn)

Tiết 6: HAI ĐƯỜNG THẲNG SONG SONG

I. MỤC TIÊU

1. Kiến thức:Ôn lại thế nào là 2 đường thẳng song song. Công nhận dấu hiệu nhận biết 2 đường thẳng song song.

2. Kỹ năng:Có kỹ năng về vẽ 1 đường thẳng đi qua 1 đường thẳng nằm ngoài đường thẳng và song song với đường thẳng đã cho. Sử dụng thành thạo êke, thước để vẽ hai đường thẳng song song.

3. Thái độ: Rèn thái độ cẩn thận, chính xác, trình bày khoa học. Nghiêm túc khi học tập.

II. Chuẩn bị:

- GV: Thước thẳng, thước đo độ, bảng phụ, sách bài tập.

- HS: Thước thẳng, thước đo độ, sách bài tập.

III. Tiến trình lên lớp:

1. Ổn định lớp (1’)

2. Kiểm tra bài cũ (6’)

 

doc147 trang | Chia sẻ: anhquan78 | Lượt xem: 560 | Lượt tải: 0download
Bạn đang xem trước 20 trang mẫu tài liệu Giáo án Hình học 7 năm 2015 (chuẩn), để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
 trang 123 SGK 
- HS thảo luận nhóm
- Các nhóm trình bày lời giải
- Các nhóm khác kiểm tra chéo nhau
- Các hình 102, 103 học sinh tự sửa
- GV treo hình 104, cho học sinh đọc bài tập 138
- HS vẽ hình ghi GT, KL
? Để chứng minh AB = CD ta phải chứng minh điều gì, trường hợp nào, có điều kiện nào.
? Phải chứng minh điều kiện nào.
? Có điều kiện đó thì pphải chứng minh điều gì.
- HS: DABD = DDCA (g.c.g)
AD chung, BDA
CDA
=
,CAD
BAD
=
	AB // CD	AC // BD
	GT	GT
? Dựa vào phân tích hãy chứng minh.
BT 36: SGK/123
GT
OA = OB, OAC
OBD
=
KL
AC = BD
CM:
Xét DOBDvà DOAC Có:
OAC
OBD
=
OA = OB
Ô chung
ÞDOAC = DOBD (g.c.g)
ÞBD = AC
BT 37 SGK/123
* Hình 101:
DDEF:D
+E
+F
= 1800.
E
= 1800 – 800 – 600.
E
= 400.
ÞDABC = DFDE vì
C
 = E
 = 400.
BC = DE
B
 = D
 = 800.
BT 38SGK/124
GT
AB // CD, AC // BD
KL
AB = CD, AC = BD
CM:
Xét DABD và DDCA có:
BDA
CDA
=
(vì AB // CD)
AD là cạnh chung
CAD
BAD
=
(vì AC // BD)
DABD = DDCA (g.c.g)
 AB = CD, BD = AC
4. Củng cố:
Phát biểu trường hợp góc-cạnh-góc ? Nhận xét qua BT38: Hai đoạn thẳng song song bị chắn bởi 2 đoạn thẳng // thì tạo ra các cặp đoạn thẳng đối diện bằng nhau.
5. Hướng dẫn về nhà (2’):Học bài và làm bài tập 39, 40 SGK/124. 
Tiết 30	 Ngày dạy:29-12-2014
ÔN TẬP HỌC KỲ I
I. Mục tiêu:
- Ôn tập một cách hệ thống kiến thức lí thuyết của HKI về khái niệm, định nghĩa, tính chất (hai góc đối đỉnh, đường thẳng song song, đường thẳng vuông góc, tổng các góc của một tam giác, các trường hợp bằng nhau của hai tam giác).
- Luyện tập kỹ năng vẽ hình, phân biệt giả thiết – kết luận, bước đầu suy luận có căn cứ của HS.
- Rèn thái độ cẩn thận, chính xác, trình bày khoa học. Nghiêm túc khi học tập.
II. Tiến trình lên lớp:
1. Ổn định lớp 
2. Kiểm tra bài cũ.
3. Luyện tập:
Phương pháp
Nội dung
- GV treo bảng phụ:
1. Thế nào là 2 góc đối đỉnh, vẽ hình, nêu tính chất.
2. Thế nào là hai đường thẳng song song, nêu dấu hiệu nhận biết hai đường thẳng song song.
- 1 học sinh phát biểu định nghĩa SGK 
- 1 học sinh vẽ hình
- Học sinh chứng minh bằng miệng tính chất
- Học sinh phát biểu định nghĩa: Hai đường thẳng không có điểm chung thì chúng song song 
- Dấu hiệu: 1 cặp góc so le trong, 1 cặp góc đồng vị bằng nhau, một cặp góc cùng phía bù nhau.
- Học sinh vẽ hình minh hoạ
3. Giáo viên treo bảng phụ vẽ hình, yêu cầu học sinh điền tính chất.
a. Tổng ba góc của ABC.
b. Góc ngoài của ABC
c. Hai tam giác bằng nhau ABC và A'B'C'
- Học sinh vẽ hình nêu tính chất 
- Học sinh nêu định nghĩa:
1. Nếu DABC và DA'B'C' có: AB = A'B', BC = B'C', AC = A'C' thì DABC = DA'B'C'
2. Nếu DABC và DA'B'C' có:
AB = A'B', , BC = B'C'
Thì DABC = DA'B'C' (c.g.c)
3. * xét DABC, DA'B'C'
B
 =B’
 , BC = B'C', C
=C’
Thì DABC = DA'B'C' (g.c.g)
- Bảng phụ: Bài tập 
a. Vẽ ABC
- Qua A vẽ AH BC (H thuộc BC), Từ H vẽ KH AC (K thuộc AC)
- Qua K vẽ đường thẳng song song với BC cắt AB tại E.
b. Chỉ ra 1 cặp góc so le trong bằng nhau, 1 cặp góc đồng vị bằng nhau, một cặp góc đối đỉnh bằng nhau.
c. Chứng minh rằng: AH EK
d. Qua A vẽ đường thẳng m AH,
 CMR: m // EK
- Phần b: 3 học sinh mỗi người trả lời 1 ý.
- Giáo viên hướng dẫn:
AH EK
AH BC, BC // EK
? Nêu cách khác chứng minh m // EK.
- Học sinh: 
A. Lí thuyết
1. Hai góc đối đỉnh
GT
O1
 và O2
đối đỉnh
KL
O1
 = O2
2. Hai đường thẳng song song 
a. Định nghĩa 
b. Dấu hiệu
3. Tổng ba góc của tam giác
4. Hai tam giác bằng nhau 
B. Luyện tập 
GT
AH BC, HK BC
KE // BC, Am AH
KL
b) Chỉ ra 1 số cặp góc bằng nhau 
c) AH EK
d) m // EK.
Chứng minh:
b) E1
= B1
 (hai góc đồng vị của EK // BC)
K1
= K2
 (hai góc đối đỉnh)
K3
 = H1
 (hai góc so le trong của EK // BC)
c) Vì AH BC mà BC // EK AH EK
d) Vì m AH mà BC AH m // BC, mà BC // EK m // EK.
4. Củng cố:
5. Hướng dẫn về nhà (2’):
Học thuộc định nghĩa, tính chất đã học kì I
Làm các bài tập 45, 47 SGK/103.
Tiết 31	 Ngày dạy:9-1-2015
ÔN TẬP HỌC KỲ I (tt)
I. Mục tiêu:
- Ôn tập một cách hệ thống kiến thức lí thuyết của HKI về khái niệm, định nghĩa, tính chất (hai góc đối đỉnh, đường thẳng song song, đường thẳng vuông góc, tổng các góc của một tam giác, các trường hợp bằng nhau của hai tam giác).
- Luyện tập kỹ năng vẽ hình, phân biệt giả thiết – kết luận, bước đầu suy luận có căn cứ của HS.
- Rèn thái độ cẩn thận, chính xác, trình bày khoa học. Nghiêm túc khi học tập.
II. Tiến trình lên lớp:
1. Ổn định lớp
2. Kiểm tra bài cũ.
Đề bài
Đáp án
1. Phát biểu dấu hiệu nhận biết hai đường thẳng song song.
2. Phát biểu định lí về tổng ba góc của một tam giác, định lí về góc ngoài của tam giác.
Hs nêu các dấu hiệu.
Hs phát biểu định lý.
3. Luyện tập:
Phương pháp
Nội dung
- Bài tập: Cho ABC, AB = AC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho AM = MD
a) CMR: ABM = DCM
b) CMR: AB // DC
c) CMR: AM BC
- Yêu cầu học sinh đọc kĩ đầu bài.
- Yêu cầu 1 học sinh lên bảng vẽ hình.
- Giáo viên cho học sinh nhận xét đúng sai và yêu cầu sửa lại nếu chưa hoàn chỉnh.
- 1 học sinh ghi GT, KL
? Dự đoán hai tam giác có thể bằng nhau theo trường hợp nào ? Nêu cách chứng minh.
- PT:
ABM = DCM
AM = MD , AMB
DMCF
=
, BM = BC
 GT đ GT
- Yêu cầu 1 học sinh chứng minh phần a.
? Nêu điều kiện để AB // DC.
- Học sinh:
ABM
DCM
=
ABM = DCM
Chứng minh trên
Bài tập 
GT
ABC, AB = AC
MB = MC, MA = MD
KL
a) ABM = DCM
b) AB // DC
c) AM BC
Chứng minh:
a) Xét ABM và DCM có:
AM = MD (GT)
AMB
DMCF
=
 (đ)
BM = MC (GT)
ABM = DCM (c.g.c)
b) ABM = DCM ( chứng minh trên)
ABM
DCM
=
 , Mà 2 góc này ở vị trí so le trong AB // CD.
c) Xét ABM và ACM có 
AB = AC (GT)
BM = MC (GT)
AM chung
ABM = ACM (c.c.c)
AMB
AMCF
=
, mà AMB
AMCF
+
= 1800.
AMB
AMCF
=
 = 900 AM BC
4. Củng cố:
Các trường hợp bằng nhau của tam giác .
5. Hướng dẫn về nhà (2’):
Ôn kĩ lí thuyết, chuẩn bị các bài tập đã ôn.
Tiết PPCT
Tuần dạy
Ngày soạn
Ngày dạy
Tiết dạy
Lớp
32
18
12/12/2010
21/12/2010
2
7/4
4
7/3
Bài:
KIỂM TRA HỌC KỲ I
I. Mục tiêu:
1. Kiến thức: Kiểm tra các kiến thức đã học về các hai góc đối đỉnh, đường thẳng song song, đường thẳng vuông góc, tổng các góc của một tam giác, các trường hợp bằng nhau của hai tam giác).
2. Kỹ năng: HS có khả năng vẽ hình, phân biệt giả thiết – kết luận, suy luận có căn cứ và chứng minh các bài toán hình học đơn giản.
3. Thái độ: Rèn thái độ cẩn thận, chính xác, trình bày khoa học. Nghiêm túc khi làm bài kiểm tra.
II. Chuẩn bị:
GV: Đề kiểm tra.
HS: Ôn tập.
III. Nội dung kiểm tra:
KIỂM TRA HỌC KỲ I
Năm học 2010-2011
Môn: Toán – Lớp 7
Thời gian làm bài: 90 phút.
(Học sinh không được sử dụng máy tính cầm tay)
Bài 1: Thực hiện phép tính:	(2,0đ)
Bài 2: Tìm x biết:	(1,5đ)
Bài 3: Cho x và y là hai đại lượng tỉ lệ nghịch và khi x = thì y = – 12.	(1,5đ)
Tìm hệ số tỉ lệ.
Biểu diễn y theo x.
Tìm y khi x = – 2; x = 3.
Bài 4: 	(1,5đ)
Ba bạn Hùng, Nam và Uyên cùng nhau nuôi heo đất để ủng hộ đồng bào bị bão lụt. Sau một tháng nuôi heo, cả ba bạn ủng hộ được 390 ngàn đồng. Biết rằng số tiền của Hùng, Nam và Uyên tỉ lệ thuận với 3; 4 và 6. Hỏi mỗi bạn đã ủng hộ đồng bào bị bão lụt bao nhiêu ?
Bài 5:	(3,0đ)
Cho tam giác ABC có AB = AC, B
= 600. Lấy I là trung điểm của BC. Trên tia AI lấy điểm D sao cho ID = IA.
Chứng minh DABI = DACI
Tìm số đo của ACB
, BAC
.
Chứng minh AC = BD.
Chứng minh AC // BD.
Bài 6: Tìm x và y biết rằng 2x = 3y và x2 + 2y2 = 17	(0,5đ)
Tiết 32	Ngày dạy: 14-1-2015
TRẢ BÀI KIỂM TRA HỌC KỲ I
I. Mục tiêu:
1. Kiến thức: Giúp học sinh thấy được những sai sót của bản thân.
2. Kỹ năng: Rèn cách trình bày bài chứng minh.
3. Thái độ: Rèn thái độ cẩn thận, chính xác, trình bày khoa học. Nghiêm túc khi học tập.
II. Tiến trình lên lớp:
1, Ổn định:
2, Chữa bài kiểm tra
- Giáo viên chữa bài theo đáp án của PGD
- GV nhận xét bài làm của HS và cho hs biết điểm kiểm tra
Tiết 33	 Ngày dạy:21-1-2015
LUYỆN TẬP BA TRƯỜNG HỢP BẰNG NHAU CỦA TAM GIÁC
I. Mục tiêu:
1. Kiến thức: Ôn tập các trường hợp bằng nhau của hai tam giác: cạnh-cạnh-cạnh, cạnh-góc-cạnh, góc-cạnh-góc.
2. Kỹ năng: Chứng minh hai tam giác bằng nhau cạnh-cạnh-cạnh, cạnh-góc-cạnh, góc-cạnh-góc.
3. Thái độ: Rèn thái độ cẩn thận, chính xác, trình bày khoa học. Nghiêm túc khi học tập.
II. Tiến trình lên lớp:
1. Ổn định lớp 
2. Kiểm tra bài cũ.
Đề bài
Đáp án
Phát biểu các trường hợp bằng nhau của tam giác 
Hs phát biểu các trường hợp bằng nhau của tam giác
3. Luyện tập:
Phương pháp
Nội dung
- Yêu cầu học sinh làm bài tập 43
- 1 học sinh lên bảng vẽ hình.
- 1 học sinh ghi GT, KL
- Học sinh khác bổ sung (nếu có)
- Giáo viên yêu cầu học sinh khác đánh giá từng học sinh lên bảng làm.
? Nêu cách chứng minh AD = BC
- Học sinh: chứng minh ADO = CBO
 OA = OB, O
 chung, OB = OD
 GT GT
? Nêu cách chứng minh.
EAB = ECD
A1
 = C1
 AB = CD B1
 = D1
	A2
 = C2
	OB = OD, 	OA = OC 
OCB = OADOAD = OCB
- 1 học sinh lên bảng chứng minh phần b
? Tìm điều kiện để OE là phân giác xOy
.
- Phân tích:
OE là phân giác xOy
EOx
 = EOy
OBE = ODE (c.c.c) hay (c.g.c)
- Yêu cầu học sinh lên bảng chứng minh.
Bài tập 43 (tr125)
GT
OA = OC, OB = OD
KL
a) AC = BD
b) EAB = ECD
c) OE là phân giác góc xOy
Chứng minh:
a) Xét OAD và OCB có:
OA = OC (GT)
O
 chung
 OB = OD (GT)
OAD = OCB (c.g.c)
 AD = BC
b) Ta có A1
 = 1800 - A2
C1
 = 1800 - C2
mà A2
 = C2
 do OAD = OCB (Cm trên)
A1
 = C1
. Ta có OB = OA + AB
 OD = OC + CD
mà OB = OD, OA = OC AB = CD
. Xét EAB = ECD có:
A1
 = C1
 (CM trên)
AB = CD (CM trên)
B1
 = D1
 (OCB = OAD)
EAB = ECD (g.c.g)
c) xét OBE và ODE có:
OB = OD (GT)
OE chung
AE = CE (AEB = CED)
OBE = ODE (c.c.c)
AOE
 = COE
 OE là phân giác xOy
4. Củng cố:
Các trường hợp bằng nhau của tam giác .
Cho DMNP có N
 = P
, Tia phân giác góc M cắt NP tại Q. Chứng minh rằng:
a. DMQN = DMQP
b. MN = MP
5. Hướng dẫn về nhà (2’):
Ôn lại 3 trường hợp bằng nhau của tam giác.
Làm lại các bài tập trên.
Tiết 34	Ngày dạy: 23-1-2015
LUYỆN TẬP BA TRƯỜNG HỢP BẰNG NHAU CỦA TAM GIÁC(tt)
I. Mục tiêu:
1. Kiến thức: Ôn tập các trường hợp bằng nhau của hai tam giác: cạnh-cạnh-cạnh, cạnh-góc-cạnh, góc-cạnh-góc.
2. Kỹ năng: Chứng minh hai tam giác bằng nhau cạnh-cạnh-cạnh, cạnh-góc-cạnh, góc-cạnh-góc.
3. Thái độ: Rèn thái độ cẩn thận, chính xác, trình bày khoa học. Nghiêm túc khi học tập.
II. Tiến trình lên lớp:
1. Ổn định lớp 
2. Kiểm tra bài cũ.
3. Luyện tập:
Phương pháp
Nội dung
- Bài tập: Cho ABC, AB = AC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho AM = MD
a) CMR: ABM = DCM
b) CMR: AB // DC
c) CMR: AM BC
- Yêu cầu học sinh đọc kĩ đầu bài.
- Yêu cầu 1 học sinh lên bảng vẽ hình.
- Giáo viên cho học sinh nhận xét đúng sai và yêu cầu sửa lại nếu chưa hoàn chỉnh.
- 1 học sinh ghi GT, KL
? Dự đoán hai tam giác có thể bằng nhau theo trường hợp nào ? Nêu cách chứng minh.
- PT:
ABM = DCM
AM = MD , AMB
DMCF
=
, BM = BC
 GT đ GT
- Yêu cầu 1 học sinh chứng minh phần a.
? Nêu điều kiện để AB // DC.
- Học sinh:
ABM
DCM
=
ABM = DCM
Chứng minh trên
Yêu cầu học sinh làm bài tập 44
- 1 học sinh đọc bài toán.
? Vẽ hình, ghi GT, KL của bài toán.
- Cả lớp vẽ hình, ghi GT, KL; 1 học sinh lên bảng làm.
- Yêu cầu học sinh làm việc theo nhóm để chứng minh.
- 1 học sinh lên bảng trình bày bài làm của nhóm mình.
- Cả lớp thảo luận theo nhóm câu b.
- Giáo viên thu phiếu học tập của các nhóm (3 nhóm)
- Lớp nhận xét bài làm của các nhóm
Bài tập 
GT
ABC, AB = AC
MB = MC, MA = MD
KL
a) ABM = DCM
b) AB // DC
c) AM BC
Chứng minh:
a) Xét ABM và DCM có:
AM = MD (GT)
AMB
DMCF
=
 (đ)
BM = MC (GT)
ABM = DCM (c.g.c)
b) ABM = DCM ( chứng minh trên)
ABM
DCM
=
 , Mà 2 góc này ở vị trí so le trong AB // CD.
c) Xét ABM và ACM có 
AB = AC (GT)
BM = MC (GT)
AM chung
ABM = ACM (c.c.c)
AMB
AMCF
=
, mà AMB
AMCF
+
= 1800.
AMB
AMCF
=
 = 900 AM BC
Bài tập 44 (tr125-SGK)
GT
DABC;B
 = C
; A1
 = A2
KL
a) DADB = DADC
b) AB = AC
 Chứng minh:
a) Xét DADB và DADC có:
A1
 = A2
 (GT)
B
 = C
 (GT) BDA
 = CDA
AD chung
DADB = DADC (g.c.g)
b) Vì DADB = DADC
 AB = AC (đpcm)
4. Củng cố:
Các trường hợp bằng nhau của tam giác .
5. Hướng dẫn về nhà (2’):
Ôn kĩ lí thuyết, chuẩn bị các bài tập đã ôn.
Tiết 35	Ngày dạy: 124-1-2015
TAM GIÁC CÂN
I. Mục tiêu:
1. Kiến thức: Học sinh hiểu được định nghĩa tam giác cân và các tính chất của nó, hiểu được định nghĩa tam giác đều và các tính chất của nó.
2. Kỹ năng: Vẽ tam giác cân, tam giác đều, tam giác vuông cân. Tính số đo các góc của tam giác cân, tam giác đều, tam giác vuông cân.
3. Thái độ: Rèn thái độ cẩn thận, chính xác, trình bày khoa học. Nghiêm túc khi học tập.
II. Tiến trình lên lớp:
1. Ổn định lớp 
2. Kiểm tra bài cũ 
3. Bài mới:
Phương pháp
Nội dung
- Giáo viên treo bảng phụ hình 111.
? Nêu đặc điểm của tam giác ABC
- Học sinh: ABC có AB = AC là tam giác có 2 cạnh bằng nhau.
- Giáo viên: đó là tam giác cân.
? Nêu cách vẽ tam giác cân ABC tại A
- Học sinh:
+ Vẽ BC
- Vẽ (B; r) ∩ (C; r) tại A
? Cho MNP cân ở P, Nêu các yếu tố của tam giác cân.
- Học sinh trả lời.
- Yêu cầu học sinh làm ?1
- Học sinh:
ADE cân ở A vì AD = AE = 2
ABC cân ở A vì AB = AC = 4
AHC cân ở A vì AH = AC = 4
- Yêu cầu học sinh làm ?2
- Học sinh đọc và quan sát H113
? Dựa vào hình, ghi GT, KL
ÐB = ÐC
­
ABD = ACD
­
c.g.c
Nhắc lại đặc điểm tam giác ABC, so sánh góc B, góc C qua biểu thức hãy phát biểu thành định lí.
- Học sinh: tam giác cân thì 2 góc ở đáy bằng nhau.
- Yêu cầu xem lại bài tập 44(tr125)
? Qua bài toán này em nhận xét gì.
- Học sinh: tam giác ABC có thì cân tại A
- Giáo viên: Đó chính là định lí 2.
? Nêu các cách chứng minh một tam giác là tam giác cân.
- Học sinh: cách 1:chứng minh 2 cạnh bằng nhau, cách 2: chứng minh 2 góc bằng nhau.
- Quan sát H114, cho biết đặc điểm của tam giác đó.
- Học sinh: DABC (ÐA=900) AB = AC.
Þ tam giác đó là tam giác vuông cân.
- Yêu cầu học sinh làm ?3
- Học sinh: DABC , ÐA=900, ÐB=ÐC
Þ ÐB=ÐC=900 Þ 2ÐB=900.
Þ ÐB=ÐC=450.
? Nêu kết luận ?3
- Giáo viên: đó là tam giác đều, thế nào là tam giác đều.
- Yêu cầu học sinh làm ?4
 ? Từ định lí 1, 2 ta có hệ quả như thế nào.
1. Định nghĩa 
a. Định nghĩa: SGK
b) ABC cân tại A (AB = AC)
. Cạnh bên AB, AC
. Cạnh đáy BC
. Góc ở đáy ÐB ; ÐC
. Góc ở đỉnh: ÐA
?1
2. Tính chất 
?2
GT
ABC cân tại A
ÐBAD=ÐCAD
KL
ÐB=ÐC
Chứng minh:
ABD = ACD (c.g.c)
Vì AB = AC, ÐBAD=ÐCAD, AD là cạnh chung
Þ ÐB=ÐC
a) Định lí 1: DABC cân tại A Þ ÐB=ÐC
b) Định lí 2: DABC có ÐB=ÐC ÞDABC cân tại A 
c) Định nghĩa 2: ABC có ÐA=900,
 AB = AC Þ DABC vuông cân tại A
?3
3. Tam giác đều 
a. Định nghĩa 3
DABC, AB = AC = BC thì DABC đều
b. Hệ quả
(SGK)
4. Củng cố:
Nêu định nghĩa tam giác cân, vuông cân, tam giác đều.
Nêu cach vẽ tam giác cân, vuông cân, tam giác đều.
Nêu cách chứng minh 1 tam giác là tam giác cân, vuông cân, đều.
5. Hướng dẫn về nhà (2’):Học thuộc định nghĩa, tính chất, cách vẽ hình.
Làm bài tập 46, 48, 49 (SGK-tr127)
Tiết 36	Ngày dạy: 27 – 1 - 2015
LUYỆN TẬP 
I. Mục tiêu:
1. Kiến thức: HS được củng cố các kiến thức về tam giác cân và hai dạng đặc biệt của tam giác cân. HS được biết thêm các thuật ngữ: định lí thuận, định lí đảo, biết quan hệ thuận đảo của hai mệnh đề và hiểu rằng có những định lí không có định lí đảo.
2. Kỹ năng: Có kỹ năng vẽ hình và tính số đo các góc (ở đỉnh hoặc ở đáy) của một tam giác cân. Biết chứng minh một tam giác cân, một tam giác đều.
3. Thái độ: Rèn thái độ cẩn thận, chính xác, trình bày khoa học. Nghiêm túc khi học tập.
II. Tiến trình lên lớp:
1. Ổn định lớp 
2. Kiểm tra bài cũ 
Hs1: Thế nào là tam giác cân, vuông cân, đều; làm bài tập 47
Hs2: Làm bài tập 49a 
Hs3: Làm bài tập 49b
3. Luyện tập:
Phương pháp
Nội dung
- Yêu cầu học sinh làm bài tập 50.
- Học sinh đọc kĩ đầu bài
- Trường hợp 1: mái làm bằng tôn
? Nêu cách tính góc B
- Học sinh: dựa vào định lí về tổng 3 góc của một tam giác.
- Giáo viên: lưu ý thêm điều kiện ÐB=ÐC
- 1 học sinh lên bảng sửa phần a
- 1 học sinh tương tự làm phần b
- Giáo viên đánh giá.
- Yêu cầu học sinh làm bài tập 51
- Học sinh vẽ hình ghi GT, KL
? Để chứng minh ÐABD=ÐACE ta phải làm gì.
- Học sinh:
ÐABD=ÐACE
­
DADB = DAEC (c.g.c)
­
AD = AE , ÐA chung, AB = AC
	­	­
 GT GT
? Nêu điều kiện để tam giác IBC cân,
- Học sinh: 
+ cạnh bằng nhau 
+ góc bằng nhau.
Bài tập 50 (tr127) 
a) Mái tôn thì ÐA=1450. 
Xét DABC có ÐA+ÐB+ÐC=1800.
1450+ÐB+ÐB=1800. 
2ÐB=350.
ÐB=17,50.
b) Mái nhà là ngói
Do DABC cân ở A Þ ÐB=ÐC. 
Mặt khác ÐA+ÐB+ÐC=1800.
1000+2ÐB=1800.
2ÐB=800.
ÐB=400.
Bài tập 51 
GT
ABC, AB = AC, AD = AE
BDxEC tại E
KL
a) So sánh ÐABD, ÐACE
b) DIBC là tam giác gì.
Chứng minh:
Xét DADB và DAEC có
AD = AE (GT)
ÐA chung
AB = AC (GT)
Þ DADB = DAEC (c.g.c)
Þ ÐABD=ÐACE
b) Ta có:
ÐAIB+ÐIBC=ÐABC
ÐAIC+ÐICB=ÐACB
Và ÐABD=ÐACE, ÐABC=ÐACB
Þ ÐIBC=ÐICB
Þ DIBC cân tại I
4. Củng cố:
Các phương pháp chứng minh tam giác cân, chứng minh tam giác vuông cân, chứng minh tam giác đều.
Đọc bài đọc thêm SGK - tr128
5. Hướng dẫn về nhà (2’):
Làm bài tập 48; 52 SGK
Làm bài tập phần tam giác cân - SBT
Học thuộc các định nghĩa, tính chất SGK.
Hướng dẫn bài 52:
Tiết 37	 Ngày dạy:28-1-2015
ĐỊNH LÝ PY-TA-GO
I. Mục tiêu:
1. Kiến thức: Học sinh nắm được lí Py-ta-go về quan hệ giữa ba cạnh của một tam giác vuông và định lí Py-ta-go đảo.
2. Kỹ năng: Biết vận dụng định lí Py-ta-go để tính độ dài của một cạnh của tam giác vuông khi biết độ dài của hai cạnh kia. Biết vận dụng định lí Py-ta-go đảo để nhận biết một tam giác là tam giác vuông.
3. Thái độ: Rèn thái độ cẩn thận, chính xác, trình bày khoa học. Nghiêm túc khi học tập.
II. Tiến trình lên lớp:
1. Ổn định lớp 
2. Kiểm tra bài cũ 
Kiểm tra quá trình làm bài tập của học sinh ở nhà.
3. Bài mới:
Phương pháp
Nội dung
- Giáo viên cho học sinh làm ?1
- Cả lớp làm bài vào vở.
- 5 học sinh trả lời ?1
- Giáo viên cho học sinh ghép hình như ?2 và hướng dẫn học sinh làm.
- Học sinh làm theo sự hướng dẫn của giáo viên.
? Tính diện tích hình vuông bị che khuất ở 2 hình 121 và 122.
- Học sinh: diện tích lần lượt là c2 và a2 + b2
? So sánh diện tích 2 hình vuông đó.
- Học sinh: c2 = a2 + b2
- Giáo viên cho học sinh đối chiếu với ?1
? Phát biểu băng lời.
- 2 học sinh phát biểu: Bình phương cạnh huyền bẳng tổng bình phương 2 cạnh góc vuông.
- Giáo viên: Đó chính là định lí Py-ta-go phát biểu.
? Ghi GT, KL của định lí.
- Giáo viên treo bảng phụ với nội dung ?3
- Học sinh trả lời.
- Yêu cầu học sinh làm ?4
- Học sinh thảo luận nhóm và rút ra kết luận.
? Ghi GT, KL của định lí.
- 1 học sinh lên bảng ghi GT, KL.
? Để chứng minh một tam giác vuông ta chứng minh như thế nào.
- Học sinh: Dựa vào định lí đảo của định lí Py-ta-go.
1. Định lí Py-ta-go 
?1
4 cm
3 cm
A
C
B
?2
c2 = a2 + b2
* Định lí Py-ta-go: SGK 
A
C
B
GT
ABC vuông tại A
KL
?3
H124: x = 6 H125: x = 
2. Định lí đảo của định lí Py-ta-go 
?4
* Định lí: SGK 
GT
ABC có 
KL
ABC vuông tại A
4. Củng cố:
BT53 SGK/131: Gv treo bảng phụ, Hs thảo luận nhóm và điền vào phiếu học tập.
Hình 127: a) x = 13 b) x = c) x = 20 d) x = 4
BT54 SGK/131: Gv treo bảng phụ, 1 học sinh lên bảng làm.
Hình 128: x = 4
BT55 SGK/131: chiều cao bức tường là: =»3,9 m.
5. Hướng dẫn về nhà (2’):
 Học theo SGK, chú ý cách tìm độ dài của một cạnh khi đã biết cạnh còn lại; cách chứng minh một tam giác vuông.
 Làm bài tập 56; 57 - tr131 SGK; bài tập 83; 85; 86; 87 - tr108 SBT.
 Đọc phần có thể em chưa biết. 
Tiết 38	 Ngày dạy:31 - 1- 2015
LUYỆN TẬP 
I. Mục tiêu:
1. Kiến thức: Củng cố định lí Py-ta-go và định lí Py-ta-go đảo.
2. Kỹ năng: Biết vận dụng định lí Py-ta-go để tính độ dài của một cạnh của tam giác vuông khi biết độ dài của hai cạnh kia. Biết vận dụng định lí Py-ta-go đảo để nhận biết một tam giác là tam giác vuông.
3. Thái độ: Rèn thái độ cẩn thận, chính xác, trình bày khoa học. Nghiêm túc khi học tập.
II. Tiến trình lên lớp:
1. Ổn định lớp 
2. Kiểm tra bài cũ 
Hs1: Phát biểu nội dung định lí Py-ta-go, vẽ hình ghi bằng kí hiệu.
Hs2: Nêu định lí Py-ta-go đảo,

File đính kèm:

  • docHinh hoc 7chuan.doc