Giáo án dạy thêm Toán 7 Buổi 22: Nghiệm của đa thức một biến
Bài 4: Tìm nghiệm của đa thức sau:
f(x) = x3 - 1; g(x) = 1 + x3
f(x) = x3 + 3x2 + 3x + 1
Giải:
Ta có: f(1) = 13 - 1 = 1 - 1 = 0, vậy x = 1 là nghiệm của đa thức f(x)
g(- 1) = 1 + (- 1)3 = 1 - 1, vậy x = - 1 là nghiệm của đa thức g(x)
g(- 1) = (- 1)3 + 3.(- 1)2 + 3. (- 1) + 1 = - 1 + 3 - 3 + 1 = 0
Vậy x = 1 là nghiệm của đa thức f(x)
Ngày soạn:29/03/2015 Ngày dạy:01/04/2015 Buổi 22: Nghiệm của đa thức MộT BIếN A. Mục tiêu: - Hiểu khái niệm nghiệm của đa thức - Biết cách kiểm tra xem số a có phải là nghiệm của đa thức hay không, bằng cách kiểm tra xem P(a) có bằng không hay không B. Chuẩn bị: Bảng phụ ghi đề bài C. Bài tập Bài 1: Tìm nghiệm của đa thức: (x2 + 2) (x2 - 3) A. x = 1; B, x = ; C. x = ; D. x = 2 Giải: Chọn C Nghiệm của đa thức: (x2 + 2) (x2 - 3) thoả mãn (x2 + 2) (x2 - 3) = 0 Bài 2: Tìm nghiệm của đa thức x2 - 4x + 5 A. x = 0; B. x = 1; C. x = 2; D. vô nghiệm b. Tìm nghiệm của đa thức x2 + 1 A. x = - 1; B. x = 0; C. x = 1; D. vô nghiệm c. Tìm nghiệm của đa thức x2 + x + 1 A. x = - 3; B. x = - 1; C. x = 1; D. vô nghiệm Giải: a. Chọn D Vì x2 - 4x + 5 = (x - 2)2 + 1 0 + 1 > 1 Do đó đa thức x2 - 4x + 4 không có nghiệm b. Chọn D vì x2 + 1 0 + 1 > 1 Do đó đa thức x2 + 1 không có nghiệm c. Chọn D vì x2 + x + 1 = Do đó đ thức x2 + x + 1 không có nghiệm Bài 3: a. Trong một tập hợp số số nào là nghiệm của đa thức, số nào không là nghiệm của đa thức P(x) = x4 + 2x3 - 2x2 - 6x + 5 b. Trong tập hợp số số nào là nghiệm của đa thức, số nào không là nghiệm của đa thức. Q(x) = x4 + 3x3 - 4x + 12 Giải: a. Ta có: P(1) = 1 + 2 - 2 - 6 + 5 = 0 P(-1) = 1 - 2 - 2 + 6 + 5 = 8 0 P(5) = 625 + 250 - 50 - 30 + 5 = 800 0 P(- 5) = 625 - 250 - 50 + 30 + 5 = 360 0 Vậy x = 1 là nghiệm của đa thức P(x), còn các số 5; - 5; - 1 không là nghiệm của đa thức. b. Làm tương tự câu a Ta có: - 3; 2; -2 là nghiệm của đa thức Q(x) Bài 4: Tìm nghiệm của đa thức sau: f(x) = x3 - 1; g(x) = 1 + x3 f(x) = x3 + 3x2 + 3x + 1 Giải: Ta có: f(1) = 13 - 1 = 1 - 1 = 0, vậy x = 1 là nghiệm của đa thức f(x) g(- 1) = 1 + (- 1)3 = 1 - 1, vậy x = - 1 là nghiệm của đa thức g(x) g(- 1) = (- 1)3 + 3.(- 1)2 + 3. (- 1) + 1 = - 1 + 3 - 3 + 1 = 0 Vậy x = 1 là nghiệm của đa thức f(x) Bài 5: a. Chứng tỏ rằng đa thức f(x) = x4 + 3x2 + 1 không có nghiệm b. Chứng minh rằng đa thức P(x) = - x8 + x5 - x2 + x + 1 không có nghiệm Giải: a. Đa thức f(x) không có nghiệm vì tại x = a bất kì f(a) = a4 + 3a2 + 1 luôn dương b. Ta có: P(x) = x5(1 - x3) + x(1 - x) Nếu x 1 thì 1 - x3 0; 1 - x 0 nên P(x) < 0 Nếu 0 x 1 thì P(x) = - x8 + x2 (x3 - 1) + (x - 1) < 0 Nếu x < 0 thì P(x) < 0 Vậy P(x) không có nghiệm. Các bài tự luyện: Bài 6: Tìm nghiệm của đa thức: a) 3x2 - 2x + 1 ; b) x3 -4x ; c) 2x2 + 2x + 1 . Bài 7: Cho các đa thức: f(x) = x2 - 4x + 3 g(x) = 3x2 - 4x + 1 h(x) = -x2 - 2x + 3 Chứng minh rằng x = 1 là nghiệm của ba đa thức trên. Hãy tìm nghiệm còn lại của mỗi đa thức.
File đính kèm:
- Day_them_toan_7_ki_II.doc