Đề thi tuyển sinh vào lớp 10 THPT tỉnh Khánh Hòa năm học 2011 – 2012 môn thi: Toán

 Cho tam giác ABC có ba góc nhọn và H là trực tâm.Vẽ hình bình hành BHCD.Đường thẳng đi qua D và song song BC cắt đường thẳng AH tại E.

1) Chứng minh A,B,C,D,E cùng thuộc một đường tròn

2) Chứng minh

3) Gọi O là tâm đường tròn ngoại tiếp tam giác ABC và M là trung điểm của BC,đường thẳng AM cắt OH tại G.Chứng minh G là trọng tâm của tam giácABC.

4) Giả sử OD = a.Hãy tính độ dài đường tròn ngoại tiếp tam giác BHC theo a

 

doc2 trang | Chia sẻ: dungnc89 | Lượt xem: 1547 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Đề thi tuyển sinh vào lớp 10 THPT tỉnh Khánh Hòa năm học 2011 – 2012 môn thi: Toán, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
SỞ GIÁO DỤC VÀ ĐÀO TẠO
KỲ THI TUYỂN SINH VÀO LỚP 10 THPT
KHÁNH HÒA
NĂM HỌC 2011 - 2012
ĐỀ CHÍNH THỨC
Môn thi: TOÁN
Ngày thi : 21/06/2011
Thời gian làm bài: 120 phút
Bài 1( 2 điểm)
 Đơn giản biểu thức: A 
 Cho biểu thức: 
Rút gọn P và chứng tỏ P 0
Bài 2( 2 điểm)
Cho phương trình bậc hai x2 + 5x + 3 = 0 có hai nghiệm x1; x2. Hãy lập một phương trình bậc hai có hai nghiệm (x12 + 1 ) và ( x22 + 1).
Giải hệ phương trình 
Bài 3( 2 điểm)
Quãng đường từ A đến B dài 50km.Một người dự định đi xe đạp từ A đến B với vận tốc không đổi.Khi đi được 2 giờ,người ấy dừng lại 30 phút để nghỉ.Muốn đến B đúng thời gian đã định,người đó phải tăng vận tốc thêm 2 km/h trên quãng đường còn lại.Tính vận tốc ban đầu của người đi xe đạp.
Bài 4( 4 điểm)
 Cho tam giác ABC có ba góc nhọn và H là trực tâm.Vẽ hình bình hành BHCD.Đường thẳng đi qua D và song song BC cắt đường thẳng AH tại E.
Chứng minh A,B,C,D,E cùng thuộc một đường tròn
Chứng minh 
Gọi O là tâm đường tròn ngoại tiếp tam giác ABC và M là trung điểm của BC,đường thẳng AM cắt OH tại G.Chứng minh G là trọng tâm của tam giácABC.
Giả sử OD = a.Hãy tính độ dài đường tròn ngoại tiếp tam giác BHC theo a
HƯỚNG DẪN GIẢI:
Bài 1
A 
Bài 2 x2 + 5x + 3 = 0
Có 
Nên pt luôn có 2 nghiệm phân biệt
x1+ x2 = - 5 ; x1x2 = 3
Do đó S = x12 + 1 + x22 + 1 = (x1+ x2)2 - 2 x1x2 + 2 = 25 – 6 + 2 = 21
 Và P = (x12 + 1) (x22 + 1) = (x1x2)2 + (x1+ x2)2 - 2 x1x2 + 1 = 9 + 20 = 29
Vậy phương trình cần lập là x2 – 21x + 29 = 0
2)ĐK 
Vậy HPT có nghiệm duy nhất ( x ;y) = ( 2 ;3)
Bài 3 :
Gọi x(km/h) là vtốc dự định; x > 0 ; có 30 phút = ½ (h)
Th gian dự định : 
Quãng đường đi được sau 2h : 2x (km)
Quãng đường còn lại : 50 – 2x (km) 
Vận tốc đi trên quãng đường còn lại : x + 2 ( km/h)
 Th gian đi quãng đường còn lại : 
Theo đề bài ta có PT: 
Giải ra ta được : x = 10 (thỏa ĐK bài toán) 
A
B
C
E
D
H
O
M
G
 Vậy Vận tốc dự định : 10 km/h
Bài 4 :
Giải câu c)
Vì BHCD là HBH nên H,M,D thẳng hàng
Tam giác AHD có OM là ĐTBình => AH = 2 OM
Và AH // OM
2 tam giác AHG và MOG có 
(đ đ)
Hay AG = 2MG
Tam giác ABC có AM là trung tuyến; G AM
Do đó G là trọng tâm của tam giác ABC
d) ( vì BHCD là HBH)
có B ;D ;C nội tiếp (O) bán kính là a 
Nên tam giác BHC cũng nội tiếp (K) có bán kính a
Do đó C (K) = ( ĐVĐD)

File đính kèm:

  • docKhanh Hoa 2012.doc