Đề tài Hướng dẫn học sinh lớp 7 giải bài toán tìm x trong đẳng thức chứa dấu giá trị tuyệt đối
* Dạng lồng dấu giá trị tuyệt đối:
a, Cách tìm phương pháp giải:
Với bài tập chứa lồng dấu giá trị tuyệt đối trước hết tôi cũng hướng dẫn học sinh xác định dạng bài, rồi tìm cách giải quyết, xét xem cần bỏ dấu giá trị tuyệt đối bằng cách nào? Phải qua mấy lần? Và áp dụng các bỏ dấu giá trị tuyệt đối nào? (Chẳng hạn bỏ dấu từ ngoài vào trong để đưa bài tập từ phức tạp đến đơn giản.)
b, Phương pháp giải:
Ta phá dấu giá trị tuyệt đối theo thứ tự từ ngoài vào trong. Tuỳ theo đặc điểm của biểu thức trong dấu giá trị tuyệt đối thuộc dạng cơ bản nào thì ta áp dụng pgương pháp của dạng cơ bản đó.
bài giải của các em hoàn thiện hơn, chính xác hơn và còn giúp các em tự tin hơn khi làm toán. 3. Đối tượng phạm vi nghiên cứu: b/ Đối tượng nghiên cứu: + Khách thể: Học sinh lớp 7D Trường THCS Hồng Dương. - Học sinh khá, giỏi môn toán lớp 7 + Đối tượng nghiên cứu: Một số dạng bài toán “ Tìm x trong đẳng thức có chứa dấu giá trị tuyệt đối”. c/ Phương pháp nghiên cứu: Thông qua bài kiểm tra khảo sát đầu năm, qua các bài kiểm tra, qua các câu hỏi vấn đáp những kiến thức cơ bản, trọng tâm mà các em đã được học. Qua đó giúp tôi nắm được những ''lỗ hổng” kiến thức của các em. Rồi tìm hiểu nguyên nhân và lập kế hoạch khắc phục. d/ Phạm vi nghiên cứu: Các bài toán không vượt quá chương trình toán lớp 7. e/ Thời gian: Từ tháng 9 năm 2013 đến tháng 3 năm 2014 4. Nhiệm vụ nghiên cứu: - Tóm tắt một số kiến thức liên quan đến việc tìm x trong đẳng thức có chứa dấu giá trị tuyệt đối. - Hướng dẫn học sinh giải một số dạng toán cơ bản về “tìm x trong đẳng thức có chứa dấu giá trị tuyệt đối”. 5. Các phương pháp nghiên cứu: - Phương pháp nghiên cứu lí luận: Tìm hiểu, nghiên cứu tài liệu bồi dưỡng, sách giáo khoa, sách tham khảo - Phương pháp tổng kết kinh nghiệm ở những lớp học sinh trước để rút kinh nghiệm cho lớp học sinh sau. PHẦN B: NỘI DUNG ĐỀ TÀI Chương I: TRẠNG THỰC TẾ TRƯỚC KHI THỰC HIỆN ĐỀ TÀI 1. Cơ sở lý luận: Lớp 7 là cơ sở hạ tầng của bậc trung học cơ sở. Kiến thức toán học lớp 6 và 7 là những cơ sở bước đầu của bậc trung học cơ sở. Nắm vững kiến thức, kỹ năng toán học ở lớp 7 là điều kiện thuận lợi để học tốt ở các lớp trên. 2. Cơ sở thực tiễn: Bản thân tôi là giáo viên vào ngành được 18 năm. Trong những năm qua tôi được phân công giảng dạy môn toán ở nhiều khối lớp từ 6 đến 9. Khi dạy học môn toán 7 , tôi nhận thấy học sinh còn nhiều vướng mắc khi giải bài toán tìm x có chứa dấu giá trị tuyệt đối . Đa số học sinh khi giải còn thiếu lô gíc ,thiếu chặt chẽ , thiếu trường hợp. Chất lượng môn toán của học sinh còn hạn chế, học sinh giỏi còn ít. Ví dụ 1 : Tìm x , biết Học sinh chưa nắm được đẳng thức luôn xảy ra vì (2 > 0 ) mà vẫn xét hai trường hợp x-3 > 0 và x - 3 < 0 và giải hai trường hợp tương ứng .Cách làm này chưa gọn Ví dụ 2 : Tìm x ,biết : 2 - 5 = 1 Nhiều học sinh chưa đưa về dạng cơ bản để giải mà nhanh chóng xét hai trường hợp giống như ví dụ 1 Ví dụ 3 : Tìm x biết - x = 2 (1) Học sinh đã làm như sau: Nếu x-1 0 suy ra x - 1 -x = 2 Nếu x-1<0 suy ra 1- x- x= 2 Với cách giải này các em không xét tới điều kiện của x Có em đã thực hiện (1) suy ra = x+ 2 x-1= x+2 hoặc x-1= -x-2 Trong trường hợp này các em mắc sai lầm ở trường hợp không xét điều kiện của x+2 Như vậy trong các cách làm trên các em làm chưa kết hợp chặt chẽ điều kiện hoặc làm bài còn chưa ngắn gọn. Chương II: SỐ LIỆU ĐIỀU TRA TRƯỚC KHI THỰC HIỆN Khi chưa hướng dẫn, tôi ra đề cho học sinh Học sinh lớp 7D Trường THCS Hồng Dương như sau : Tìm x , biết a, = 2 ( 3 điểm) b, 2-5 = 1 ( 3 điểm) c, - x = 2 ( 2 điểm) d, += 3 ( 2 điểm) Tôi thấy học sinh còn lúng túng về cách giải ,chưa nắm vững phương pháp giải đối với từng dạng bài , chưa kết hợp được kết quả với điều kiện xảy ra , chưa lựa chọn được phương pháp giải nhanh gọn và hợp lí . Kết quả đạt được như sau : Lớp TS HS Giỏi Khá Trung bình Yếu và kém Số HS Tỉ lệ % Số HS Tỉ lệ % Số HS Tỉ lệ % Số HS Tỉ lệ % 7D 31 1 3,2 3 9,7 14 45,2 13 41,9 Kết quả thấp là do học sinh còn vướng mắc những điều tôi đã nói ở trên và phần lớn các em chưa làm được câu c,d . Chương III: NHỮNG BIỆN PHÁP THỰC HIỆN I. Những kiến thức cơ bản liên quan đến bài toán tìm x trong đẳng thức chứa dấu giá trị tuyệt đối Yêu cầu học sinh nắm vững và ghi nhớ các kiến thức cần thiết để giải bài tập tìm x trong đẳng thức chứa dấu giá trị tuyệt đối, một điều khó khăn khi dạy học sinh lớp 7 về vấn đề này đó là học sinh chưa được học về phương trình, bất phương trình, các phép biến đổi tương đương, hằng đẳng thức nên có những phương pháp dễ xây dựng thì chưa thể hướng dẫn học sinh được, vì thế học sinh cần nắm vững được các kiến thức cơ bản sau: Qui tắc bỏ dấu ngoặc, qui tắc chuyển vế. Tìm x trong đẳng thức: Thực hiện phép tính , chuyển vế đưa về dạng ax = b => x = Định lí và tính chất về giá trị tuyệt đối. |A| = |-A| |A| ³ 0 Định lí về dấu nhị thức bậc nhất. II . Những biện pháp tác động giáo dục và giải pháp khoa học tiến hành. Từ định nghĩa, tính chất về giá trị tuyệt đối hướng dẫn học sinh phân chia từng dạng bài, phát triển từ dạng cơ bản sang các dạng khác, từ phương pháp giải dạng cơ bản, dựa vào định nghĩa, tính chất về giá trị tuyệt đối tìm tòi các phương pháp giải khác đối với mỗi dạng bài, loại bài. Biện pháp cụ thể như sau: Một số dạng cơ bản: Dạng cơ bản |A(x)| = B với B ³ 0 a. Cách tìm phương pháp giải: Đẳng thức có xảy ra không? Vì sao? Nếu đẳng thức xảy ra thì cần áp dụng kiến thức nào để bỏ được dấu giá trị tuyệt đối (áp dụng tính chất giá trị tuyêt đối của hai số đối nhau thì bằng nhau). b. Phương pháp giải Ta lần lượt xét A(x) = B hoặc A(x) = - B c. Ví dụ Ví dụ 1 :( Bài 25 (a) sách giáo khoa trang 16 tập 1) Tìm x , biết = 2,3 GV: Đặt câu hỏi bao quát chung cho bài toán : Đẳng thức có xảy ra không ? vì sao? ( Đẳng thức có xảy ra vì 0 và 2,30 ) Cần áp dụng kiến thức nào để giải , để bỏ được dấu giá trị tuyệt đối ( áp dụng tính chất giá trị tuyệt đối của hai số đối nhau thì bằng nhau ) Bài giải = 2,3 x - 1,7= 2,3 ; hoặc x-1,7 = - 2,3 + Xét x - 1,7= 2,3 x= 2,3 + 1,7 x = 4 + Xét x - 1,7 = - 2,3 x = -2,3 +1,7 x= - 0,6 Vậy x= 4 hoặc x= - 0,6 Từ ví dụ đơn giản , phát triển đưa ra ví dụ khó dần Ví dụ 2 : ( bài 25b SGK trang 16 tập 1) Tìm x biết Với bài này tôi đặt câu hỏi ‘‘Làm sao để đưa về dạng cơ bản đã học ” Từ đó học sinh biến đổi đưa về dạng: Bài giải x + = hoặc x += - + Xét x + = x = + Xét x += - x = Vậy x = hoặc x = Ví dụ 3: Tìm x ,biết 3 -17 =16 Làm thế nào để đưa về dạng cơ bản đã học ? Từ đó học sinh đã biến đổi đưa về dạng cơ bản đã học = 11 Bài giải 3 -17 =16 3 = 33 = 11 9 - 2x = 11 hoặc 9 - 2x = -11 + Xét 9 - 2x =11 - 2x = 2 x= -1 + Xét 9 - 2x = - 11 - 2x = - 20 x = 10 Vậy x = - 1 hoặc x = 10 1.2. Dạng cơ bản = B(x) ( trong đó biểu thức B (x) có chưá biến x a, Cách tìm phương pháp giải Cũng đặt câu hỏi gợi mở như trên , học sinh thấy được đẳng thức không xảy ra khi B(x) < 0. Vậy cần áp dụng kiến thức nào để có thể dựa vào dạng cơ bản đế suy luận tìm ra cách giải bài toán trên không ? Có thể tìm ra mấy cách ? b, Phương pháp giải Cách 1 : ( Dựa vào tính chất ) = B(x) Với điều kiện B(x) 0 ta có A(x) = B(x) hoặc A(x) = - B(x) sau đó giải hai trường hợp với điều kiện B(x) 0 Cách 2 : Dựa vào định nghĩa xét các quá trình của biến của biểu thức chứa dấu giá trị tuyệt đối . = B(x) +Xét A(x) 0 x? Ta có A(x) = B(x) ( giải tìm x để thoả mãn A(x) 0 ) + Xét A(x) < 0 x? Ta có A(x) = - B(x) ( giải tìm x để thoả mãn A(x) < 0) + Kết luận : x = ? Lưu ý : Qua hai dạng trên tôi cho học sinh phân biệt rõ sự giống nhau ( đều chứa một dấu giá trị tuyệt đối ) và khác nhau ( =m 0 dạng đặc biệt của dạng hai) Nhấn mạnh cho học sinh thấy rõ được phương pháp giải loại đẳng thức chứa một dấu giá trị tuyệt đối , đó là đưa về dạng =B (Nếu B0 đó là dạng đặc biệt,còn B<0 thì đẳng thức không xảy ra . Nếu B là biểu thức có chứa biến là dạng hai và giải bằng cách 1 ) hoặc ta đi xét các trường hợp xảy ra đối với biểu thức trong giá trị tuyệt đối. c, Ví dụ: Ví dụ 1 Tìm x ,biết : = x- 2 Cách 1 : Với x - 20 x2 ta có 8-2x = x-2 hoặc 8-2x = -( x-2 ) + Nếu 8-2x = x-2 -3x = -10 x = (Thoả mãn) + Nếu 8 - 2x = -( x-2) 8- 2x = - x + 2 x = 6 (Thoả mãn) Vậy x = hoặc x = 6 Cách 2:+ Xét 8-2x 0 x 4 ta có 8-2x = x-2 x= (Thoả mãn) + Xét 8- 2x 4 ta có -(8-2x) = x-2 x= 6(Thoả mãn) Vậy x = hoặc x = 6 Ví dụ 2 Tìm x ,biết -x = 5 Cách 1 : - x = 5 = x + 5 Với x+5 0 x-5 ta có x-3 = x+5 hoặc x-3 = - ( x+5) + Nếu x-3 = x+5 0x = 8 ( loại ) + Nếu x-3 =-( x+5) x-3 = -x-5 2x= -2 x=-1 ( Thoả mãn) Vậy x = -1 Cách 2 : -x = 5 + Xét x- 3 0 x 3 ta có x-3 - x= 5 0x= 8 ( loại ) + Xét x- 3 <0 x < 3 ta có -(x-3) -x = 5 -x+3 -x=5 2x = -2 x= -1(thoả mãn) Vậy x= -1 1.3 Dạng + =0 a, Cách tìm phương pháp giải Với dạng này tôi yêu cầu học sinh nhắc lại kiến thức về đặc điểm của giá trị tuyệt đối của một số ( giá trị tuyệt đối của một số là một số không âm ) . Vậy tổng của hai số không âm bằng không khi nào ? ( cả hai số đều bằng không ) . Vậy ở bài này tổng trên bằng không khi nào ? ( A(x) =0 và B(x)=0 ) Từ đó ta tìm x thoả mãn hai điều kiện : A(x) = 0 và B(x) = 0 b, Phương pháp giải Tìm x thoả mãn hai điều kiện : A(x) = và B(x) = 0 c, Ví dụ Tìm x , biết 1, + =0 2, + =0 Bài giải 1, + =0 =0 và=0 + Xét =0 x+2=0 x=-2 (1) + Xét =0 x2 +2x =0 x(x+2) =0 x= 0 hoặc x+2 =0 x= - 2 (2) Kết hợp (1)và (2) x= - 2 2, + =0 =0 và =0 + Xét =0 x2 + x=0 x(x+1) =0 x=0 hoặc x+1 =0 x=-1 (1) + Xét =0 ( x+1)(x-2) =0 x+1=0 hoặc x-2 =0 x= - 1 hoặc x=2 (2) Kết hợp (1) và (2) ta được x= -1 Lưu ý : Ở dạng này tôi lưu ý cho học sinh phải ghi kết luận giá trị tìm được thì giá trị đó phải thoả mãn hai đẳng thức =0 và =0 2. Dạng mở rộng: * = hay- =0 a, Cách tìm phương pháp giải Trước hết tôi đặt vấn đề để học sinh thấy đây là dạng đặc biệt ( vì đẳng thức luôn xảy ra vì cả hai vế đều không âm) , từ đó các em tìm tòi hướng giải . Cần áp dụng kiến thức nào về giá trị tuyệt đối để bỏ được đấu giá trị tuyệt đối và cần tìm ra phương pháp giải ngắn gọn . Có hai cách giải : Xét các trường hợp xảy ra của A(x) và B(x) (dựa vào định nghĩa )và cách giải dựa vào tính chất 2 số đối nhau có giá trị tuyệt đối bằng nhau để suy ra ngay A(x) =B(x) ; A(x) =-B(x) ( vì ở đây cả hai vế đều không âm do 0 và 0). Để học sinh lựa chọn cách giải nhanh ,gọn ,hợp lí để các em có ý thức tìm tòi trong giải toán và ghi nhớ được b, Phương pháp giải Cách 1 : Xét các trường hợp xảy ra của A(x) và B(x) để phá giá tị tuyệt đối Cách 2 : dựa vào tính chất 2 số đối nhau có giá trị tuyệt đối bằng nhau ta tìm x thoả mãn một trong hai điều kiện A(x) =B(x) hoặc A(x) =-B(x) c, Ví dụ Ví dụ 1 : Tìm x ,biết = x+4 = 2x-1 hoặc x+4 = - (2x-1) + Xét x+4 = 2x-1 x = 5 + Xét x+4 = - (2x-1) x+4 = - 2x +1 x = -1 Vậy x=5 hoặc x= - 1 Ví dụ 2: Tìm x , biết + = 8 Bước 1 : Lập bảng xét dấu : Trước hết cần xác định nghiệm của nhị thức : x-2=0 x=2 và x+4 =0 x= - 4 Trên bảng xét dấu xếp theo thứ tự giá trị của x phải từ nhỏ đến lớn Ta có bảng sau: x -4 2 x - 2 - - 0 + x+4 + + - 0 Bước 2: Dựa vào bảng xét dấu các trường hợp xảy ra theo các khoảng giá trị của biến .Khi xét các trường hợp xảy ra không được bỏ qua điều kiện để A=0 mà kết hợp với điều kiện để A >0 ( ví dụ -4 x <2) Cụ thể : Dựa vào bảng xét dấu ta có các trường hợp sau : + Nếu x<-4 ta có x-2 <0 và x+4 <0 nên = 2-x và = -x-4 Đẳng thức trở thành 2-x -x-4 = 8 -2x = 10 x= - 5 ( thoả mãn x< -4) + Nếu -4 x<2 ta có = 2-x và = x+4 Đẳng thức trở thành 2-x +x+ 4 = 8 0x= 2 (vôlí ) + Nếu x2 ta có =x-2 và = x+4 Đẳng thức trở thành: x - 2 + x+4 = 8 2x = 6 x = 3 (thoả mãn x2 ) Vậy x= - 5 ; x = 3 Lưu ý: Qua hai cách giải trên tôi cho học sinh so sánh để thấy được lợi thế trong mỗi cách giải . Ở cách giải 2, thao tác giải sẽ nhanh hơn , dễ dàng xét dấu trong các khoảng giá trị hơn , nhất là các dạng chứa 3 ; 4 dấu giá trị tuyệt đối ( nên ý thức lựa chọn cách giải) Ví dụ 3 : Tìm x ,biết (1) Nếu giải bằng cách 1 sẽ phải xét nhiều trường hợp xảy ra ,dài và mất nhiều thời gian . Còn giải bằng cách hai (lập bảng xét dấu ). x 1 3 6 x-1 + + + - 0 x-3 + - - 0 + x-6 - - - 0 + + Nếu x<1 thì (1) 1- x + 3x - 9 +30 - 5x = 8 x = (loại) + Nếu 1x<3 thì (1) x-1 +3x-9 +30 -5x =8 x= 6 (loại) + Nếu 3x<6 thì (1) x-1 -3x+9 +30 -5x = 8 x= (thoả mãn ) + Nếu x6 thì (1) x-1 -3x +9 +5x -30 =8x=10 (thoả mãn ) Vậy x= ; x =10 Tuy nhiên với cách hai sẽ dể mắc sai sót về dấu trong khi lập bảng ,nên khi xét dấu các biểu thức trong dấu giá trị tuyệt đối cần phải hết sức lưu ý và tuân theo đúng quy tắc lập bảng . Một điều cần lưu ý cho học sinh đó là kết hợp trường hợp trong khi xét các trường hợp xảy ra để thoả mãn biểu thức 0 (tôi đưa ra ví dụ cụ thể để khắc phục cho học sinh ). Ví dụ 4 : Tìm x biết Lập bảng xét dấu x 4 9 x - 4 0 + + - x - 9 - - + 0 + Xét các trường hợp xảy ra , trong đó với x 9 thì đẳng thức trở thành x - 4 + x - 9 = 5 x = 9 thoả mãn x 9 , như vậy nếu không kết hợp với x = 9 để x-9 = 0 mà chỉ xét tớí x > 9 để x-9 > 0 thì sẽ bỏ qua mất giá trị x = 9 Từ những dạng cơ bản đó đưa ra các dạng bài tập mở rộng khác về loại toán này: dạng lồng dấu ,dạng chứa từ ba dấu giá trị tuyệt đối trở lên. + Xét 4 x <9 ta có x- 4 +9- x = 5 0x = 0 thoả mãn với mọi x sao cho 4 x < 9 + Xét x < 4 ta có 4-x+9-x = 5 x = 4 (loại) Vậy 4x9 * Dạng lồng dấu giá trị tuyệt đối: a, Cách tìm phương pháp giải: Với bài tập chứa lồng dấu giá trị tuyệt đối trước hết tôi cũng hướng dẫn học sinh xác định dạng bài, rồi tìm cách giải quyết, xét xem cần bỏ dấu giá trị tuyệt đối bằng cách nào? Phải qua mấy lần? Và áp dụng các bỏ dấu giá trị tuyệt đối nào? (Chẳng hạn bỏ dấu từ ngoài vào trong để đưa bài tập từ phức tạp đến đơn giản.) b, Phương pháp giải: Ta phá dấu giá trị tuyệt đối theo thứ tự từ ngoài vào trong. Tuỳ theo đặc điểm của biểu thức trong dấu giá trị tuyệt đối thuộc dạng cơ bản nào thì ta áp dụng pgương pháp của dạng cơ bản đó. c,Ví dụ: Tìm x biết: ||x-5| +9|=10 ||4-x|+|x-9||=5 Bài giải: ||x-5| +9|=10 =>|x-5| + 9 = 10 hoặc |x-5|+ 9 = -10 + Xét |x-5| + 9 = 10 => |x-5| = 1 => x – 5 = 1 hoặc x – 5 = -1 => x= 6 hoặc x = 4 + Xét |x-5|+ 9 = - 10 =>|x-5|=-19( loại vì |x-5|³ 0) Vậy x = 6 hoặc x = 4. ||4-x|+|x-9||=5 (dạng |A| = m ³ 0) =>|4-x|+|x-9| = 5 hoặc |4-x|+|x-9|= -5 *Xét |4-x|+|x-9| = 5(1) ( Dạng chứa 2 dấu giá trị tuyệt đối không rơi vào dạng đặc biệt). Lập bảng xét dấu: x 4 9 4 – x + 0 - - x – 9 - - 0 + Dựa vào bảng xét dấu các trường hợp xảy ra: + Với x £4 Ta có |4-x|= 4 –x và | x-9| = 9 –x thì (1) trở thành: 4-x + 9 –x = 5 13 - 2x = 5 x = 4(thoả mãn ) + Với 4<x<9 thì ta có: |4-x|=x-4 và |x-9|=9- x khi đó (1) trở thành: x-4+9 –x = 5 => 5 = 5 (thoả mãn với mọi x)=> 4<x<9 + Với x≥9 ta có: |4-x|=x-4 và |x-9|= x-9 khi đó (1) trở thành: x-4 + x-9 = 5 => 2x -13 = 5 => x=9(TM) Vậy 4≤x ≤ 9 * Xét |4-x|+|x-9|=-5 . Điều này không xảy ra vì |4-x|+ |x – 9|≥ 0 Vậy 4 ≤ x ≤ 9 3. phương pháp giải và cách tìm phương pháp giải Sau khi giới thiệu cho học sinh hết các dạng bài tôi chốt lại cho học sinh : *Phương pháp giải : tìm x trong đẳng thức chứa dấu giá trị tuyệt đối Phương pháp 1 : Nếu =B ( B0) thì suy ra A=B hoặc A= - B không cần xét tới điều kiện của biến x Phương pháp 2 :Sử dụng tính chất và 0 để giải dạng Và = ,=B(x) Phương pháp 3 : Xét khoảng giá trị của biến ( dựa vào định nghĩa ) để bỏ dấu giá trị tuyệt đối , thường để giải với dạng =B(x) hay =+C *Cách tìm tòi phương pháp giải : Cốt lõi của việc giải bài toán tìm x trong đẳng thức có chứa dấu giá trị tuyệt đối đó là cách bỏ dấu giá trị tuyệt đối . + Trước hết xem bài có rơi vào dạng đặc biệt không ? ( có đưa về dạng đặc biệt được không). Nếu là dạng đặc biệt =B ( B0) hay =thì áp dụng tính chất giá trị tuyệt đối (giải bằng phương pháp 1 đã nêu ) không cần xét tới điều kiện của biến . + Khi đã xác định được dạng cụ thể ta nên suy nghĩ cách nào làm nhanh hơn, gọn hơn thì lựa chọn. PHẦN C: KẾT QUẢ THỰC HIỆN CÓ SO SÁNH ĐỐI CHỨNG Khi áp dụng đề tài nghiên cứa này vào giảng dạy cho học sinh lớp tôi dạy .Tôi thấy học sinh làm dạng toán này nhanh gọn hơn.Học sinh không còn lúng trong khi gặp dạng toán này .Cụ thể khi làm phiếu kiểm tra với đề bài như sau: Tìm x, biết : a, = 5(3đ) b, 2+8 = 26 (3đ) c, 8 - = x+3 (4đ) Kết quả nhận được như sau : học sinh không còn lúng túng về phương pháp giải cho từng loại bài Biết lựa chọn cách giải nhanh , gọn ,hợp lí Hầu hết đã trình bày lời giải chặt chẽ Kết quả cụ thể như sau: Lớp TS HS Giỏi Khá Trung bình Yếu và kém Số HS Tỉ lệ % Số HS Tỉ lệ % Số HS Tỉ lệ % Số HS Tỉ lệ % 7D 31 4 12,9 12 38,7 12 38,7 3 9,7 Khi nghiên cứu đề tài này tôi đã rút ra một số bài học cho bản thân trong việc bồi dưỡng học sinh khá - giỏi. Những bài học đó là: 1 – Hệ thống kiến thức bổ trợ cho dạng toán sắp dạy. 2 – Hệ thống các phương pháp cơ bản để giải loại toán đó. 3 – Khái quát hoá, tổng quát hoá từng dạng, từng loại bài tập. 4 – Tìm tòi, khai thác sâu kiến thức. Sưu tầm và tích luỹ nhiều bài toán, sắp xếp thành từng loại để khi dạy sẽ giúp học sinh nắm vững dạng toán. PHẦN D: Nh÷ng kiÕn nghÞ vµ ®Ò nghÞ 1. Đối với giáo viên: - Cần phải tâm huyết với nghề, phải biết quan tâm giúp đỡ các em lúc khó khăn, lúng túng trong các bài toán khó, không nên tạo không khí ngột ngạt trong lớp học. - Cần phải biết lựa chọn nhiều phương pháp khác nhau và tổ chức các hoạt động học tập khác nhau để vận dụng các giải pháp trên một cách linh hoạt, chủ động và sáng tạo. Tránh tình trạng vận dụng một cách khô cứng, máy móc làm ảnh hưởng đến hiệu quả tiết dạy và năng suất học tập bộ môn của học sinh. - Để giảng dạy hiệu quả, giáo viên cần nắm chắc lí thuyết và có những bước giải hợp lí đảm bảo tính khoa học, tính hệ thống, tính vừa sức và phù hợp với đối tượng học sinh vùng miền. 2. Đối với học sinh: - Đi học thường xuyên, chú ý nghe giảng bài, tích cực làm bài trước khi đến lớp - Trang bị đầy đủ các loại đồ dùng, sách giáo khoa, sách tham khảo và các đồ dùng học tập toán học khác. 3. Đối với phụ huynh học sinh: - Cố gắng tạo điều kiện học tập tốt nhất cho con em mình ở nhà, nên mua cho mỗi em một cái máy tinh bỏ túi, kiểm tra vở hàng ngày của các em, nhắc nhở các em về nhà làm bài tập đầy đủ. 4. Đối với các cấp quản lí giáo dục: - Đối với nhà trường, chuyên môn cần đóng góp ý kiến và tổ chức nhiều chuyên đề ngoại khoá nhằm đổi mới phương pháp dạy học và nâng cao hiệu quả trong việc vận dụng các giải pháp giúp học sinh giải quyết tốt bài toán tìm x trong đẳng thức chứa dấu giá trị tuyệt đối. Đồng thời giúp người thực hiện đề tài có thể mở rộng đối tượng nghiên cứu ra phạm vi học sinh toàn khối THCS trường THCS Hång D¬ng trong các năm học tiếp theo. - Phòng thiết bị nên mua thêm máy tính CASIO fx - 500MS, fx-570MS, fx-570 ES PLUS, để sao cho những học sinh khó khăn không mua được máy,được tạo điều kiện mượn máy để học. PHẦN III: KẾT LUẬN Trên đây là những kinh nghiệm tôi đã đúc kết lại trong quá trình dạy toán và dạy học sinh khá, giỏi giải một dạng toán.Trong nội dung đề tài nêu trên mặc dù rất cố gắng nhưng với kiến thức còn hạn chế tôi chưa đưa ra vấn đề một cách trọn vẹn được nên rất mong nhận được sự đóng góp ý kiến của các thầy cô giáo và bạn bè đồng nghiệp để tôi hoàn thiện để tài này hơn và có những kinh nghiệm nhiều hơn trong việc dạy các em học sinh giải toán. . Tôi xin trân thành cảm ơn! Xác nhận của thủ trưởng đơn vị Hà Nội, ngày 05 tháng 04 năm 2014. Tôi xin cam đoan đây là sáng kiến của mình viết, không sao chép nội dung của người khác. Tác giả: Lê Thị Hồng Nga Ý kiến nhận xét đánh giá và xếp loại của Hội đồng khoa học ............................................................................................................................................................ .............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
File đính kèm:
- Sang_kien_kinh_nghiem_Toan_7_Tim_x_cuc_hay20132014_20150726_022416.doc