Đề cương ôn tập kiểm tra học kì II – Môn Toán 11

Bài 7. Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh 2a, cạnh bên SA vuông góc với (ABC) và SA = a.

1) Tính góc giữa hai mặt phẳng (ABC) và (SBC).Tính diện tích tam giác ABC;

2) Tính khoảng cách giữa: a) A và (SBC); b) AC và SB.

 

doc2 trang | Chia sẻ: dungnc89 | Lượt xem: 1069 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Đề cương ôn tập kiểm tra học kì II – Môn Toán 11, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
NỘI DUNG
Giải tích
Giới hạn của hàm số;
Tính liên tục của hàm số, vận dụng chứng minh phương trình có nghiệm;
Đạo hàm, tính đạo hàm bằng công thức và quy tắc;
Vận dụng ý nghĩa hình học của đạo hàm, viết phương trình tiếp tuyến của đường cong.
Hình học 
Chứng minh vuông góc;
Tính góc;
Tính khoảng cách.
BÀI TẬP
Các bài tập SGK
ĐS và GT: B3.121, B7.122, B3.132, B6.133, B5.142, B7,8.143, B14.144, B2,3,4.163, B3,4,5.169, B13.180, B17,18,19. 181
HH: B4,5.98, B4,6,7.105, B6.114, B11.114, B3,4,5.121, B7.122, B7.126 
Bài tập làm thêm
Bài 1. Tính giới hạn của các hàm số sau:
; 
;
; 
;
;
;
;
;
;
;
Bài 2. Tìm tham số m để hàm số sau liên tục trên tập xác định của mỗi hàm số sau:
;
.
Bài 3. Chứng minh rằng:
Phương trình: x5 – 3x2 – 1 = 0 có hai nghiệm trong khoảng ( - 1; 1);
Phương trình: (m2 – m – 1) + x – 3 = 0 có nghiệm với mọi số thực m. 
Bài 4. Tính đạo hàm y’ của mỗi hàm số sau:
y = x4 – x3 + 2x2 – x + 1;
y=; 
y = cos3x + tan2x;
y = xsinx + cosx;
 ;
; 
;
 y = (3x + 2)2(x2 + 1); 
 y = cot(2x – 3) + tan3x;
 y = 2(cos6x + sin6x) – 3(cos4x + sin4x);
 y = ;
 y = tan2(sinx);
Bài 5. Cho hàm số y = x3 + 3x2 – 2 có đồ thị (C). Viết phương trình tiếp tuyến của (C) biết:
Tiếp điểm có toạ độ (1; - 2);
Tiếp điểm có tung độ y0 = - 2;
Hệ số góc k = - 3;
Song song với d: y = 9x – 7;
Vuông góc với ∆ : x – 9y + 10 = 0;
Đi qua A(0; - 2).
Bài 6. Cho hình chóp S.ABC, đáy ABC là tam giác vuông tại B. Biết SA vuông góc với mặt phẳng (ABC), SA = BC = a, AB = a.
Chứng minh tam giác SBC vuông. Tính diện tích tam giác SBC.
Tính góc giữa hai mặt phẳng (SAC) và (SAB), góc giữa đường thẳng SB và mp(SAC).
Tính góc giữa hai mặt phẳng (SAC) và (SBC). 
Tính khoảng cách và xác định đoạn vuông góc chung giữa hai đường thẳng AB và SC.
Bài 7. Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh 2a, cạnh bên SA vuông góc với (ABC) và SA = a. 
Tính góc giữa hai mặt phẳng (ABC) và (SBC).Tính diện tích tam giác ABC;
Tính khoảng cách giữa: a) A và (SBC); b) AC và SB.
Bài 8. Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, có cạnh SA = a và SA vuông góc với (ABCD).Gọi M, N lần lượt là hình chiếu của A lên SB và SD.
Chứng minh BD SC và MN (SAC);
Tính góc giữa a) SC và (ABCD); b) (SBD) và (ABCD). 
Bài 9. Cho hình chóp đều S.ABCD, đáy là hình vuông tâm O, cạnh bằng a, cạnh bên bằng a. Gọi M là trung điểm của BC.
Chứng minh (SOM) vuông góc với (SBC).
Tính góc giữa các cạnh bên và các mặt bên với mặt đáy (ABCD).
Tính khoảng cách từ O và từ A đến mặt phẳng (SBC)
Xác định và tính diện tích thiết diện của hình chóp cắt bởi mp (P) đi qua A, (P) SC.
Bài 10. Cho hình chóp S.ABCD, đáy ABCD là hình thang vuông tại A và B. Biết: AD = 2a, AB = BC = a. SA vuông góc với mặt phẳng (ABCD), SA = a. 
Chứng minh các mặt bên của hình chóp là các tam giác vuông.
 Tính góc giữa SC và (ABCD).
Tính khoảng cách giữa AD và SC.
Trên AB lấy điểm M sao cho AM = x, (0 < x< a). Xác định và tính diện tích thiết diện của hình chóp cắt bởi mặt phẳng (P) đi qua M và (P) vuông góc với AB.
Bài 11. Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình thoi cạnh a, góc BAD bằng 600. SA vuông góc với (ABCD) và SA = .Tính góc giữa đường thẳng SB và mặt phẳng (SAD). Xác định và tính diện tích thiết diện của hình chóp S.ABCD, cắt bởi mặt phẳng (P) đi qua A và vuông góc với SC.
Bài 12. Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = a, BC = a. SA vuông góc với đáy SA = a. H, K lần lượt là hình chiếu của A trên SB, SD.
Chứng minh HK SC.
Tính góc giữa (SBC) và SC với đáy (ABCD). 
Bài 13. Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm I, cạnh a và có góc A bằng 60o, cạnh SC = và SC vuông góc với (ABCD). Chứng minh (SAB) (SAD).
Bài 14. Cho lăng trụ tam giác ABC.A’B’C’ có A’A = A’B = A’C. Chứng minh BCC’B’ là hình chữ nhật.
Bài 15. Cho hình lập phương ABCD.A’B’C’D’. Chứng minh mặt phẳng (AB’C’D) vuông góc với mặt phẳng (BCD’A’). Tính góc giữa A’B và AD’.

File đính kèm:

  • docOn_tap_cuoi_nam.doc