Đề cương ôn tập học kỳ II môn Toán 8

Câu 16 Lựa chọn định nghĩa đúng về lăng trụ đứng

A. Hình hình lăng trụ đứng là hình có các mặt bên đều là những hình bình hành .

B. Hình hình lăng trụ đứng là hình có các mặt bên đều là những hình thang vuông .

C. Hình hình lăng trụ đứng là hình có các mặt bên đều là những hình thoi .

D. Hình hình lăng trụ đứng là hình có các mặt bên đều là những hình chữ nhật .

 

doc12 trang | Chia sẻ: dungnc89 | Lượt xem: 1016 | Lượt tải: 1download
Bạn đang xem nội dung tài liệu Đề cương ôn tập học kỳ II môn Toán 8, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ĐỀ CƯƠNG «n tËp häc kú ii
M¤N TO¸N 8
PHẦN §¹I Sè :
A) NỘI DUNG ƠN TẬP
I. Ph­¬ng tr×nh bËc nhÊt mét Èn: 
 1)Ph­¬ng tr×nh mét Èn,: 
-Mét ph­¬ng tr×nh víi Èn x cã d¹ng A(x) = B(x), trong ®ã vÕ tr¸i A(x) vµ vÕ ph¶i B(x) lµ hai biĨu thøc cđa cïng mét biÕn x.ph­¬ng tr×nh bậc nhất mét Èn
 - Hai ph­¬ng tr×nh t­¬ng ®­¬ng: Hai ph­¬ng tr×nh ®­ỵc gäi lµ t­¬ng ®­¬ng nÕu chĩng cã cïng mét tËp hỵp nghiƯm
 2)Ph­¬ng tr×nh b ậc nh ất mét Èn
-Ph­¬ng tr×nh bËc nhÊt 1ẩn là phương trình cĩ dạng : ax + b = 0 (x lµ Èn; a, b lµ c¸c h»ng sè, a ¹ 0).
 - NghiƯm cđa ph­¬ng tr×nh bËc nhÊt, v à c ách gi ải.
3) Ph­¬ng tr×nh ®­a ®­ỵc vỊ d¹ng ax + b = 0, s ố nghi ệm c ủa phương trình 
VËn dơng ®­ỵc quy t¾c chuyĨn vÕ vµ quy t¾c nh©n đ ể ®­a ph­¬ng tr×nh ®· cho vỊ d¹ng ax + b = 0.
4) Ph­¬ng tr×nh tÝch: c ách giải ph ư ơng trình tích: VỊ ph­¬ng tr×nh tÝch: 
 A.B.C = 0 (A, B, C lµ c¸c ®a thøc chøa Èn).
 Yªu cÇu n¾m v÷ng c¸ch t×m nghiƯm cđa ph­¬ng tr×nh nµy b»ng c¸ch t×m nghiƯm cđa c¸c ph­¬ng tr×nh:
A = 0, B = 0, C = 0. 
5) Ph­¬ng tr×nh chøa Èn ë mÉu:
 - Đi ều ki ện x ác đ ịnh 
- N¾m v÷ng quy t¾c gi¶i ph­¬ng tr×nh chøa Èn ë mÉu:
 + T×m ®iỊu kiƯn x¸c ®Þnh.
 + Quy ®ång mÉu vµ khư mÉu.
 + Gi¶i ph­¬ng tr×nh võa nhËn ®­ỵc.
 + Xem xÐt c¸c gi¸ trÞ cđa x t×m ®­ỵc cã tho¶ m·n §KX§ kh«ng vµ kÕt luËn vỊ nghiƯm cđa ph­¬ng tr×nh.
6) C ách gi ả i bµi to¸n b»ng c¸ch lËp ph­¬ng tr×nh bËc nhÊt mét Èn:
N¾m v÷ng c¸c b­íc gi¶i bµi to¸n b»ng c¸ch lËp ph­¬ng tr×nh:
B­íc 1: LËp ph­¬ng tr×nh:
 + Chän Èn sè vµ ®Ỉt ®iỊu kiƯn thÝch hỵp cho Èn sè.
 + BiĨu diƠn c¸c ®¹i l­ỵng ch­a biÕt theo Èn vµ c¸c ®¹i l­ỵng ®· biÕt.
 + LËp ph­¬ng tr×nh biĨu thÞ mèi quan hƯ gi÷a c¸c ®¹i l­ỵng.
B­íc 2: Gi¶i ph­¬ng tr×nh.
B­íc 3: Chän kÕt qu¶ thÝch hỵp vµ tr¶ lêi. 
 II. BÊt ph­¬ng tr×nh bËc nhÊt mét Èn: Néi dung gåm:
1) Liªn hƯ gi÷a thø tù vµ phÐp céng, phÐp nh©n:
 -NhËn biÕt ®­ỵc bÊt ®¼ng thøc
 - BiÕt ¸p dơng mét sè tÝnh chÊt c¬ b¶n cđa bÊt ®¼ng thøc ®Ĩ so s¸nh hai sè hoỈc chøng minh bÊt ®¼ng thøc.
 a < b vµ b < c Þ a < c
a < b Þ a + c < b + c
a 0
 	 a bc víi c < 0
2) BÊt ph­¬ng tr×nh bËc nhÊt mét Èn. BÊt ph­¬ng tr×nh t­¬ng ®­¬ng.
3) Gi¶i bÊt ph­¬ng tr×nh bËc nhÊt mét Èn.
4). NhËn biÕt bÊt ph­¬ng tr×nh bËc nhÊt mét Èn vµ nghiƯm cđa nã, hai bÊt ph­¬ng tr×nh t­¬ng ®­¬ng.
- VËn dơng ®­ỵc quy t¾c chuyĨn vÕ vµ quy t¾c nh©n víi mét sè ®Ĩ biÕn ®ỉi t­¬ng ®­¬ng bÊt ph­¬ng tr×nh.
- Gi¶i thµnh th¹o bÊt ph­¬ng tr×nh bËc nhÊt mét Èn.
- BiÕt biĨu diƠn tËp hỵp nghiƯm cđa bÊt ph­¬ng tr×nh trªn trơc sè.
- Sư dơng c¸c phÐp biÕn ®ỉi t­¬ng ®­¬ng ®Ĩ biÕn ®ỉi bÊt ph­¬ng tr×nh ®· cho vỊ d¹ng ax + b 0, ax + b £ 0, ax + b ³ 0 vµ tõ ®ã rĩt ra nghiƯm cđa bÊt ph­¬ng tr×nh.
B. H×nh häc: 
A) NỘI DUNG ƠN TẬP
1. §a gi¸c, diƯn tÝch cđa ®a gi¸c: Néi dung gåm:
- §a gi¸c. §a gi¸c ®Ịu
 +C¸c kh¸i niƯm: ®a gi¸c, ®a gi¸c ®Ịu.
 + C¸ch vÏ c¸c h×nh ®a gi¸c ®Ịu cã sè c¹nh lµ 3, 6, 12, 4, 8. 
.- C¸c c«ng thøc tÝnh diƯn tÝch cđa h×nh ch÷ nhËt, h×nh tam gi¸c, cđa c¸c h×nh tø gi¸c ®Ỉc biƯt.
- TÝnh diƯn tÝch cđa h×nh ®a gi¸c låi.
- HiĨu c¸ch x©y dùng c«ng thøc tÝnh diƯn tÝch cđa h×nh tam gi¸c, h×nh thang, c¸c h×nh tø gi¸c ®Ỉc biƯt khi thõa nhËn (kh«ng chøng minh) c«ng thøc tÝnh diƯn tÝch h×nh ch÷ nhËt.
- BiÕt c¸ch tÝnh diƯn tÝch cđa c¸c h×nh ®a gi¸c låi b»ng c¸ch ph©n chia ®a gi¸c ®ã thµnh c¸c tam gi¸c.
2. Tam gi¸c ®ång d¹ng: Néi dung gåm:
+ §Þnh lÝ Ta-lÐt trong tam gi¸c.
- C¸c ®o¹n th¼ng tØ lƯ.
- §Þnh lÝ Ta-lÐt trong tam gi¸c (thuËn, ®¶o, hƯ qu¶).
- TÝnh chÊt ®­êng ph©n gi¸c cđa tam gi¸c.
+ Tam gi¸c ®ång d¹ng.
- §Þnh nghÜa hai tam gi¸c ®ång d¹ng. 
 - C¸c tr­êng hỵp ®ång d¹ng cđa hai tam gi¸c. 
_ C¸c tr­êng hỵp ®ång d¹ng cđa hai tam gi¸c vu«ng.
3. H×nh l¨ng trơ ®øng. H×nh chãp ®Ịu: Néi dung gåm:
- H×nh hép ch÷ nhËt. H×nh l¨ng trơ ®øng. H×nh chãp ®Ịu. H×nh chãp cơt ®Ịu.
- C¸c quan hƯ kh«ng gian trong h×nh hép.
 - NhËn biÕt ®­ỵc c¸c lo¹i h×nh ®· häc vµ c¸c yÕu tè cđa chĩng.
 - NhËn biÕt ®­ỵc c¸c kÕt qu¶ ®­ỵc ph¶n ¸nh trong h×nh hép ch÷ nhËt vỊ quan hƯ song song vµ quan hƯ vu«ng gãc gi÷a c¸c ®èi t­ỵng ®­êng th¼ng, mỈt ph¼ng.
- VËn dơng ®­ỵc c¸c c«ng thøc tÝnh diƯn tÝch, thĨ tÝch ®· häc.
- BiÕt c¸ch x¸c ®Þnh h×nh khai triĨn cđa c¸c h×nh ®· häc.
B/ Các dạng bài tập
I/ Bài tập trắc nghiệm : 
Hãy chọn câu trả lời đúng trong các câu sau :
1/ Trong các phương trình sau phương trình nào là phương trình bậc nhất một ẩn : A. x2 – 2 = 0 ; 	B. x – 3 = 0 ;	 C. – 2x = 0 ; 	D. 0x + 3 = 0
2/ Trong các nhận xét sau nhận xét nào đúng :
A. Hai phương trình vô nghiệm thì tương đương với nhau
B. Hai phương trình có duy nhất một nghiệm thì tương đương với nhau
C. Hai phương trình có vô số nghiệm thì tương đương với nhau
D. Cả ba câu trên đều đúng
3/ Phương trình bậc nhất một ẩn có :
A. Vô số nghiệm B. Có thể vô nghiệm, vô số nghiệm, có một nghiệm duy nhất 
C. Một nghiệm duy nhất D. Vô nghiệm, 
4/ Tìm điều kiện của tham số m để phương trình (m2 – 4)x2 + (m – 2)x + 3 = 0 là phương trình bậc nhất một ẩn 
 A. m = – 2 ; 	B. m = – 1 ; 	C. m = 1 ; 	D = 2 
5/ Giá trị nào sau đây là nghiệm cđa phương trình 3x – 4 = 0,:
A. x = ;	 B. x = ; 	C. x = ; 	D. x = 
6/ : Phương trình x2 = - 4 
a) Cĩ một nghiệm x = 2. b) Cĩ một nghiệm x = - 2. 
c) Cĩ hai nghiệm x = 2 và x = - 2. d) Vơ nghiệm
7/ : x = 1 là nghiệm của phương trình nào dưới đây ?
a) 3x + 5 = 2x + 3 b) 2( x - 1 ) = x - 1 c) - 6x + 5 = - 5x + 6 d) x + 1 = 2( x + 7 )
8/: Phương trình 2x + m = x - 1 nhận x = 2 là nghiệm khi giá trị của m là số nào dưới đây ?
a) m = 3 b) m = - 3 c) m = 0 d) m = 1 
9/ : Phương trình ( x - 3 )( 5 - 2x ) = 0 cĩ tập nghiệm là tập số nào dưới đây ?
a) 3 b) c) d) 
10/ : Điều kiện xác định của PT là những giá trị nào dưới đây của x ?
a) x ¹ 3 và x ¹ -3 b) x ¹ - 3,5 c) x ¹ 3 , x ¹ - 3 và x ¹ - 3,5 d) x ¹ 3
11/: Số nghiệm số của phương trình ( x2 - 1 )( x2 + 1 ) = 0 là 
a) 2 nghiệm b) 4 nghiệm c) Một nghiệm d) Vơ nghiệm
12 : Trong các phương trình dưới đây, phương trình nào cĩ một nghiệm ?
a) 2x + 3 = - 5 + 2x b) ( x - 1 )( x + 3 ) = 0 c) x - 3 = 2 - x d) x2 - 1 = 0 
13 : Trong các phương trình dưới đây, phương trình nào cĩ vơ số nghiệm ?
a) x3 + 1 = 0 b) 3x - 2 = 4 + 3x c) - 1 = -1 + d) x - 1 = 3x
14/ Nghiệm của phương trình là :
A. 0 ;	 	B. 1 ; 	C. – 1 ; 	D. 2
15/ Hãy xác định dấu của số a, biết : 4a < 3a 
A. a > 0 ;	B. a ≥ 0 ; 	C. a ≤ 0 ; 	D. a < 0
16/ Hãy xác định dấu của số b, biết : – 5b ≥ 3b
A. b > 0 ;	 	B. b ≥ 0 ; 	C. b ≤ 0 ; 	D. b < 0
17/ Trong các kẳng định sau khẳng định nào đúng?
A. a > b a2 > b2	B. a > b a2 < b2	C. a2 < 0	D. a2 0
18: Cho a > b thì ta cĩ:
A. - a > - b	B. -2a - 2b
19. x = - 2 là một nghiệm của bất phương trình:
A. x > -2	B. x 2	C. - 2x > 22	D. 2x < - 2
20. Bất phương trình - x 6 tương đương với bất phương trình:
A. -2x > -12	B. -2x 12	C. x 6	D. x < - 6
21 Trong các BPT sau BPT nào là BPT bậc nhất một ẩn :
A. x2 – 2 > 0 ; 	B. x – 3 < 0 ;	 C. – 2y ≥ 0 ; 	D. 0x + 3 ≤ 0
22/ Tìm điều kiện của m để bất phương trình m(m2 – 1)x2 + m + 6 > 0 bất phương trình bậc nhất một ẩn .
A. m = – 1 ; 	B. m = 1 ;	 C. m = ± 1 ; 	D. Không có giá trị nào của m
23/ Tập nghiệm của bất phương trình 2x – 4 > 0 là :
A. {x | x > 2} ; 	B. {x | x < 2} ; 	C. {x | x ³ 2} ; 	D. {x | x £ 2} 
24/ Bất phương trình 3x – 5 > 2x có nghiệm 
A. Vô nghiệm ; 	B. x > 5 ;	 C. x < 5 ; 	D. Mọi x
25/ Nghiệm của phương trình : çx – 4ï = 5 là :
A. x = 9, x = – 1 ; 	B. x = – 9, x = 1 ;	 C. x = – 1, x = 1 ; 	D. x = – 9, x = 9
26..: Cho -2.c < 3.c giá trị nào của c nghiệm đúng bất đẳng thức trên:
A. c=-1 B c=- C.c= - D. c=3
27.M ệnh đ ề n ào sau đ ây l à đ úng :
a. S ố a l à s ố âm n ếu 3a5a 
c. S ố a l à s ố d ư ơng n ếu 5a<3a d b. S ố a l à s ố âm n ếu 5a<3a 
28.Giá trị nào khơng phải là nghiệm của bất phương trình :x2 >0
a. x =0 b.x =-2 c. x = 3 d.x =-2
Câu 3: Hình vẽ biểu diễn tập nghiệm của bất phương trình nào sau đây:
A . x 3 	B. x > 3 ; 	C. x < 3 D. x 3
B. H×nh häc: 
Câu 1: Cho hình vẽ, biết MN //BC. Đẳng thức nào sau đây là sai:
A . = B . = 	
C. = D. = 
S
S
Câu 2: Trong hình vẽ , khẳng định nào sau đây là đúng:
S
S
S
A.AMN BAC B.BAC NAM C.ANM ACB D. ACB AMN
Câu 3: Trong các khẳng định sau, khẳng định nào sai?
A. Hai tam giác bằng nhau thì đồng dạng với nhau 
B. Hai tam giác đều thì đồng dạngvới nhau
C.Hai tam giác vuơng cân thì đồng dạng với nhau 
D. Hai tam giác cân thì đồng dạng với nhau
Câu4: Trong hình vẽ, biết BD là phân giác gĩc B , 
AB = 6cm , AD = 3cm , DC = 4 cmKhi đĩ độ dài BC bằng:
A. 8 	B . 7 	C. 6 	D. 5
Câu 5: Tỉ số của cặp đoạn thẳng AB = 150mm, CD = 9cm là :
A. ;	B. ; 	C. ; 	D. 
Câu 6:18/ Cho tam giác ABC có BC = 5cm, AC = 4cm, AB = 6 và AD là đường phân giác. Tính độ dài đoạn BD .
 A.3; 	B.4; 	C.5; 	D. 6
Câu 7 19/ Trong các mệnh đề sau mệnh đề nào đúng ?
A. Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia thì hai tam giác đó bằng nhau.
B. Nếu ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác kia thì hai tam giác đó đồng dạng.
C. Nếu hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác kia và hai góc của tam giác này bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng .
D. Hai tam giác vuông thì đồng dạng với nhau.
Câu 8 2Cho DABC DMNP theo tỉ số thì DMNP DABC theo tỉ số :
 A. ; 	B. 2 ; 	C. ;	 D. Một tỉ số khác
Câu 9: Cho tam giác ABC đồng dạng với tam giác A’B’C’
 với tỉ số đồng dạng k = thì tỉ số chu vi của hai tam giác đó là :
 A.; 	B. ;	 C. ; 	 D.
Câu 10: 22/ Cho tam giác ABC vuông tại A, đường cao AH,
 biết AB = 12, AC = 16, BC = 20 thì độ dài AH là :
A.; 	B. ; 	C. ; 	D. 
Câu11/ Hình hộp chữ nhật có 
A. 6 đỉnh, 8 mặt, 12 cạnh ; 	B. 8 đỉnh, 6 mặt, 12 cạnh ; 
C. 12 đỉnh, 6 mặt, 8 cạnh ; 	D. 6 đỉnh, 12 mặt, 8 cạnh ;
Câu 12 24/ Hình hộp chữ nhật có ba kích thước a, b, c hãy lựa chọn công thức đúng để tính diện tích xung quanh .
A. (a + b).c ;	B. 2.(a + b).c ; 	C. 3.(a + b).c ; 	D. 4.(a + b).c
25/ Cho hình hộp chữ nhật ABCDA1B1C1D1, tứ giác AA1C1C là hình gì ?
A. Hình thang ;	B. Hình thoi ; 	C. Hình bình hành ; 	D. Hình chữ nhật 
Câu13 26/ Lựa chọn định nghĩa đúng về hình lập phương
A. Hình hộp chữ nhật là hình có 4 mặt là những hình chữ nhật .
B. Hình hộp chữ nhật là hình có 4 mặt là những hình vuông.
C. Hình lập phương là hình có 6 mặt đều là những hình chữ nhật 
D. Hình lập phương là hình có 6 mặt đều là những hình vuông.
C âu14 Hình lập phương có cạnh là 4cm thì thể tích là :
A. 8cm3 ; 	B. 16cm3 ; 	C. 64cm3 ; 	D. 12cm3 
 C âu15 Hình lập phương có cạnh là a thì diện tích toàn phần là :
A. 3a2 ; 	B. 4a2 ; 	C. 5a2 ; 	D. 6a2 
C âu 16 Lựa chọn định nghĩa đúng về lăng trụ đứng
A. Hình hình lăng trụ đứng là hình có các mặt bên đều là những hình bình hành .
B. Hình hình lăng trụ đứng là hình có các mặt bên đều là những hình thang vuông .
C. Hình hình lăng trụ đứng là hình có các mặt bên đều là những hình thoi .
D. Hình hình lăng trụ đứng là hình có các mặt bên đều là những hình chữ nhật .
C âu 17 Cho hình lăng trụ đứng, hãy chọn công thức đúng để tính diện tích toàn phần.
A. Stp = Sxq + Sđáy ; 	B. Stp = Sxq + 2Sđáy ; 
C. Stp = 2Sxq + Sđáy ; 	D. Stp = 2Sxq + 2Sđáy
B.BÀI TẬP TỰ LUẬN:I.ĐẠI SỐ:
Dạng 2: Giải phương trình quy về phương trình bậc nhất 1 ẩn số:
Bài 1: Giải các phương trình sau:
a. 2x -10 = 5x + 2 b. 3(x-1) -5 = - x + 4 
c. (x-2)2 -3x = ( x-5)(x+1) + 10
d. (x + 2)(x-2) +3x2 = (2x+1)2 +2x
Bài 2: Giải các phương trình sau:
a. = b. + = 4 - 
Bài 3: Giải các phương trình sau:
a. ( 2x - 1)( 6 +2x) = 0 b. (x -3)(2x +)= 0 
c. (2x-1)2 - (2-x)(2x-1) = 0 d. 2x2 + 5x - 3=0
e. (x+2)( 1-4x2)= x2+4x +4
Dạng 2: Giải phương trình chứa ẩn ở mẫu:
Giải các phương trình sau:
a. = x+ 4 b. - = -1
c. 
d. 
Dạng 3: Giải bài tốn bằng cách lập phương trình
Bài 1: Mẫu số của 1 phân số lớn hơn tử số của nĩ là 5.Nếu tăng cả tử lẫn mẫu của nĩ thêm 5 đơn vị thì được phân số mới bằng phân số .Tìm phân số ban đầu.
Bài 2: Tuổi bố hiện nay bằng 2tuổi con.Cách đây 5 
năm tuổi bố bằng tuổi con.Hỏi tuổi bố và tuổi con hiện nay.
Bài 3: Số học sinh tiên tiến của hai khối 7 và 8 là 270 em.Tính số học sinh tiên tiến của mỗi khối biết rằng số học sinh tiên tiến của khối 7 bằng 60% số học sinh tiên tiến của khối 8.
Bài 4: Một người đi xe đạp từ A đến B với vận tốc trung bình 15km/h.Lúc về người đĩ đi với vận tốc 12km/h nên thời gian về nhiều hơn thời gian đi là 45 phút.Tính độ dài quãng đường AB.
Bài 5: Một cơng nhân được giao làm một số sản phẩm trong một thời gian nhất định.Người đĩ dự định làm mỗi ngày 48 sản phẩm.Nhưng thực tế ,mỗi ngày người đĩ làm nhiều hơn dự định 6 sản phẩm nên hồn thành trước thời gian dự định là 1 ngày.Tính số sản phầm người đĩ được giao.
Bài 6: Cho một số cĩ hai chữ số.Nếu viết thêm số 4 vào bên phải số đã cho thì được một số lớn hơn số đã cho là 193.Tìm số đã cho.
Dạng 4: Chứng minh bất đẳng thức
Bµi 1: Cho hai số m , n thoả mãn : m > n ch ứng minh :
a.2m -5 >2n-5 b. 3-2m<4-2n
Bài 2: Cho hai số m , n thoả mãn : m > n>0.Chứng minh các bất đằng thức sau:
a. b. 
c. d. 
Bài 3: Cho hai số a , b tuỳ ý. Chứng minh:
a. b. 
Bài 4: Cho a,b là hai số dương.Chứng minh rằng:
.Dấu đẳng thức xảy ra khi nào?
Dạng 5: Giải bất phương trình và biểu diễn tập nghiệm trên trục số:
Bài 1: Giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số
a. 2 - 5x -2x -7 b.1+2(x-1) > 3 -2x 
c. d. 
 Bài 2: a) Tìm x sao cho giá trị của biểu thức khơng nhỏ hơn giá trị của biểu thức 
 b)Tìm x sao cho giá trị của biểu thức (x + 1)2 nhỏ hơn giá trị của biểu thức (x – 1)2.
 c) Tìm x sao cho giá trị của biểu thức khơng lớn hơn giá trị của biểu 
 thức .
 d)Tìm x sao cho giá trị của biểu thức khơng lớn hơn giá trị của biểu thức
 Bài 3 : Tìm số tự nhiên n thoả mãn :
 a) 5(2 – 3n) + 42 + 3n 0 ;	b) (n+ 1)2 – (n +2) (n – 2) 1,5 .
 Bài 4: Tìm tất cả các nghiệm nguyên dương của bất phương trình :11x – 7 < 8x + 2
Dạng 6: Giải phương trình chứa dấu giá trị tuyệt đối:
Giải các phương trình sau: 
a. |x| = 2x + 3 b.| x -3| -5x = 4	e. 
c. |1-2x| + x = 2 d. |x + 4| - 2| x -1| = 5x	f
II.HÌNH HỌC:
Bài 1 : Cho tam giác ABC vuơng ở A ,cĩ AB = 6cm; AC = 8cm. Vẽ đường cao AH và phân giác BD.
Tính BC.
Chứng minh AB2 = BH.BC.
Vẽ phân giác AD của gĩc A (D BC), chứng minh H nằm giữa B và D.
Tính AD,DC.
Gọi I là giao điểm của AH và BD, chứng minh AB.BI = BD.AB.
Tính diện tích tam giác ABH.
Bài 2:Cho ABC ( AB< AC).Trên cạnh AC lấy điểm E sao cho gĩc ABE = gĩc ACB.Kẻ ED//BC (D AB)
a.Chứng minh ABE đồng dạng với ACB.
b.Chứng minh gĩc ADE = gĩc AEB.
c.Chứng minh: BE.AE = AD.BC.
Bài 3: Cho hình thoi ABCD với AC = 6cm,BD= 8cm.O là giao điểm hai đường chéo AC và BD, M là trung điểm DC.AM và BD cắt nhau tại I.Kẻ IK//DC(KAC)
a.Tính tỉ số .
b.Chứng minh IOK đồng dạng với DOA.
c.Tính diện tích tam AIK.
Bài 4: Cho hình thang ABCD(AB //CD) và AB < CD , cĩ BC = 15cm, đường cao BH = 12cm, DH = 16cm.
Tính HC.
Chứng minh DB BC.
Tính diện tích hình thang ABCD.
Bài 5: Cho hình thang ABCD(AB//CD).Gọi O là giao điểm của hai đường chéo AC và BD.Biết AB= 5cm, OA = 2cm,OC= 4cm OD = 3,6cm.
a.Chứng minh rằng OA.OD = OB.OC.
b.Tính DC,OB.
c.Đường thẳng qua O vuơng gĩc AB cắt AB,CD là lượt tại H và K.Chứng minh: = .
Bài 6: Cho tam giác OAB(OA=OB).Đường thẳng vuơng gĩc với AB tại B cắt đường thẳng AO ở C.
a.Chứng minh O là trung điểm AC.
b.Kẻ đường cao AD của tam giác AOB. Đường thẳng qua B và song song với AD cắt tia OA ở F.Chứng minh OA2 = OD.OF.
c.Cho AOB = 450 ; OA = 10cm.Tính OF.
Bài 7: Cho ABC cân ở A và M là trung điểm của BC. Lấy các điểm D, E theo thứ tự thuộc các cạnh AB, AC sao cho gĩc DME = gĩc B
a.Chứng minh tam BDM đồng dạng với CME.
b.Chứng minh tích BD.CE khơng đổi.
c.Chứng minh DM là phân giác của gĩc BDE.
Bài 8: Cho tam giác ABC nhọn.Các đường cao AD, BE, CF cắt nhau tại H.M là trung điểm của BC.Đường thẳng vuơng gĩc với HM tại H cắt AB, AC theo thứ tự tại P và Q.
a.Chứng minh AQH đồng dạng với BHM.
b. Chứng minh = .
c.Chứng minh : H là trung điểm PQ.
Bài 9: Cho tam giác ABC, trên cạnh AB lấy điểm M ,trên cạnh AC lấy điểm N sao cho 
đường trung tuyến AI (I thuộc BC ) cắt đoạn thẳng MN tại K . Chứng minh KM = KN.
Bài 10 :Cho tam giác vuơng ABC(Â = 900) cĩ AB = 12cm,AC = 16cm.Tia phân giác gĩc A cắt BC tại D.
Tính tỉ số diện tích 2 tam giác ABD và ACD.
Tính độ dài cạnh BC của tam giác .
Tính độ dài các đoạn thẳng BD và CD.
Tính chiều cao AH của tam giác .
Bài 11: Cho tam giác vuơng ABC ( Â = 900). Một đường thẳng song song với cạnh BC cắt hai cạnh AB
và AC theo thứ tự tại M và N , đường thẳng qua N và song song với AB ,cắt BC tại D.
Cho biết AM = 6cm; AN = 8cm; BM = 4cm.
a) Tính độ dài các đoạn thẳng MN,NC và BC.
b) Tính diện tích hình bình hành BMND.
Bài 12: Trên một cạnh của một gĩc cĩ đỉnh là A , đặt đoạn thẳng AE = 3cm và AC = 8cm, trên cạnh thứ
 hai của gĩc đĩ, đặt các đoạn thẳng AD = 4cm và AF = 6cm.
Hai tam giác ACD và AEF cĩ đồng dạng khơng ? Tại sao?
Gọi I là giao điểm của CD và EF . Tính tỉ số của hai tam giác IDF và IEC.
Bài 13: Cho tam giác ABC và đường trung tuyến BM. Trên đoạn BM lấy điểm D sao cho .
Tia AD cắt BC ở K ,cắt tia Bx tại E (Bx // AC)
Tìm tỉ số .
Chứng minh .
Tính tỉ số diện tích hai tam giác ABK và ABC.
Bài 14: Cho hình thang ABCD(AB //CD). Biết AB = 2,5cm; AD = 3,5cm; BD = 5cm; và gĩc 
DAB = DBC.
Chứng minh hai tam giác ADB và BCD đồng dạng.
Tính độ dài các cạnh BC và CD.
Tính tỉ số diện tích hai tam giác ADB và BCD.
Bài 15: Cho tam giác cân ABC (AB = AC). Vẽ các đường phân giác BD và CE.
Chứng minh BD = CE.
Chứng minh ED // BC.
Biết AB = AC = 6cm ; BC = 4cm; Hãy tính AD,DC,ED.
Bài 16: Cho hình thang ABCD(AB //CD) và AB < CD . Đường chéo BD vuơng gĩc với cạnh bên BC.
Vẽ đường cao BH.
Chứng minh hai tam giác BDC và HBC đồng dạng.
Cho BC = 15cm; DC = 25cm; Tính HC và HD?
Tính diện tích hình thang ABCD?
Bài 17:Cho tam giác vuơng ABC vuơng ở A ; cĩ AB = 8cm; AC = 15cm; đường cao AH
a) Tính BC; BH; AH.
b) Gọi M,N lần lượt là hình chiếu của H lên AB và AC.Tứ giác AMNH là hình gì? Tính độ dài đoạn MN.
c) Chứng minh AM.AB = AN.AC.
Bài 18: Cho tam giác ABC, các đường cao BD và CE cắt nhau tại H .Đường vuơng gĩc với AB tại B và 
đừơng vuơng gĩc với AC tại C cắt nhau tại K.Gọi M là trung điểm của BC.
 Chứng minh rằng :
ADB AEC; AED ACB.
HE.HC = HD. HB
H,M,K thẳng hàng
Tam giác ABC phải cĩ điều kiện gì thì tứ giác BACK sẽ là hình thoi? Hình chữ nhật?
Bài 19:Cho tam giác ABC cân tại A , trên BC lấy điểm M . Vẽ ME , MF vuơng gĩc với AC,AB,
Kẻ đường cao CA ,chứng minh :
Tam giác BFM đồng dạng với tam giác CEM.
Tam giác BHC đồng dạng với tam giác CEM.
ME + MF khơng thay đổi khi M di động trên BC.
Bài 20: Cho hình hộp chữ nhật ABCD.A’B’C’D’; cĩ AB =10cm; BC = 20cm; AA’ = 15cm.
Tính thể tích hình hộp chữ nhật ?
Tính độ dài đường chéo AC’ của hình hộp chữ nhật ?
Bài 21: Cho hình chĩp tứ giác đều S.ABCD cĩ cạnh đáy AB = 10cm, cạnh bên SA = 12cm.
Tính đường chéo AC.
Tính đường cao SO và thể tích hình chĩp .

File đính kèm:

  • docDe_cuong_on_tap_toan_8_ki_II.doc
Giáo án liên quan