Bồi dưỡng Toán Lớp 5 - Các dạng toán thường gặp

Dạng 8 : viết liên tiếp một nhóm chữ số hoặc chữ cái

Bài 1 : Viết liên tiếp các chữ cái A, N, L, Ư, U thành dãy AN LƯU, AN LƯU, . Chữ cãi thứ 1998 là chữ cái gì?

 Giải :

 Để viết 1 nhóm AN LƯU người ta phải viết 5 chữ cái A, N, L, Ư, U.

Nếu xếp 5 chữ cái ấy vào 1 nhóm ta có :

 Chia cho 5 không dư là chữ cái U

 Chia cho 5 dư 1 là chữ cái A

 Chia cho 5 dư 2 là chữ cái N

 Chia cho 5 dư 3 là chữ cái L

 Chia cho 5 dư 4 là chữ cái Ư

Mà : 1998 : 5 = 339 (nhóm) dư 3

 Vậy chữ cái thứ 1998 là chữ cái L của nhóm thứ 400

Bài 2 : Một người viết liên tiếp nhóm chữ Tổ quốc việt nam thành dãy

Tổ quốc việt nam Tổ quốc việt nam .

a, Chữ cái thứ 1996 trong dãy là chữ gì?

b, Người ta đếm được trong dãy có 50 chữ T thì dãy đó có bao nhiêu chữ Ô? bao nhiêu chữ I

c, Bạn An đếm được trong dãy có 1995 chữ Ô. Hỏi bạn ấy đếm đúng hay sai? Giải thích tại sao?

d, Người ta tô màu các chữ cái trong dãy theo thứ tự : Xanh, đỏ, tím, vàng. xanh, đỏ, . Hỏi chữ cái thứ 1995 trong dãy tô màu gì?

 

doc148 trang | Chia sẻ: xuannguyen98 | Lượt xem: 684 | Lượt tải: 0download
Bạn đang xem trước 20 trang mẫu tài liệu Bồi dưỡng Toán Lớp 5 - Các dạng toán thường gặp, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
 đá cân nặng4471,2 kg. Hỏi 1 dm3 đá nặng bao nhiêu ki lô gam?
	Giải :
	Nửa chu vi phiến đá là :
	60 : 2 = 30 (dm)
	Chiều dài của phiến đá là :
	30 : (3 + 2) x 3 = 18 (dm)
	Chiều rộng của phiến đá là :
	30 – 18 = 12 (dm)
	Chiều cao của phiến đá là :
	18 : 2 = 9 (dm)
	Thể tích của phiến đá là :
	18 x 12 x 9 = 1944 (dm3)
	1 dm3 đá nặng là :
	4471,2 : 1944 = 2,3 (kg)
	đáp số 2,3 kg
Bài 7: Một hình chữ nhật có chiều cao 6 dm. Nếu tăng chiều cao thêm 2 dm thì thể tích hộp tăng thêm 96 dm3. Tính thể tích hộp.
	Giải :
	Diện tích đáy của hộp chữ nhật là :
	96 : 2 = 48 (dm2)
	Thể tích hộp chữ nhật là :
	48 x 6 = 228 (dm3)
Cách 2
	6 dm so với 2 dm thì gấp :
	6 : 2 = 3 (lần)
	Phần tăng thêm và hình hộp chữ nhật có chung diện tích đáy và chiều cao hình hộp chữ nhật gấp 3 làan phần tăng thêm nên thể tích hình hộp chữ nhật cũng phải gấp 3 lần thể tích tăng thêm.
	vậy thể tích hình hộp chữ nhật là :
	96 x 3 = 288 (dm3)
	Đáp số : 288 dm3
Bài 8 : Một căn phòng dài 8 m, rộng 6 m cao 5 m. Người ta muốn quét vôi trần nhà và 4 mặt tường trong phòng. Trên 4 mựt tường có 2 cửa ra vào mỗi cửa rộng 1,6 m cao 2,2 m và 4 cửa sổ, mỗi cửa sổ rộng 1,2 m cao 1,5 m. Tiền thuê quét vôi 1 mét vuồng hết 1500 đồng. Hỏi tiền công quét vôi căn phòng đó hết bao nhiêu ?
	Giải :
	Diện tích 4 mặt tường của căn phòng là :
	(9 + 6) x 2 x 5 = 150 (m2)
	Diện tích trần nhà là :
	9 x 6m = 54 (m2)
	Diện tích 4 cửa sổ là :
	1,2 x 1,5 x 4 = 7,2 (m2)
	Diện tích 2 cửa ra vào là :
	2,2 x 1,6 x 2 = 7,04 (m2)
	Diện tích cần quét vôi là :
	(150 + 54) – (7,2 + 7,04) = 189,76 (m2)
	Tiền công mướn quét vôi là :
	1500 x 189,76 = 284640 (đồng)
	Đáp số 284640 đồng
Bài 9 : Một phòng họp dài 8 m, rộng 5 m, cao 4 m. Hỏi phải mở rộng chiều dài ra thêm bao nhiêu để phgòng họp có thể chứa được 60 người và mỗi người có đủ 4,5 m2 không khí để đảm bảo sức khoẻ ?
	Giải :
	Thể tích của hội trường sau khi mở rộng là :
	4,5 x 60 = 270 (m3)
	Diện tích mặt bên của hội trường là :
	5 x 4 = 20 (m2)
	Chiều dài của hội trường sau khi mở rộng là :
	270 : 20 = 13,5 (m)
	Chiều dài phải mở rộng thêm là :
	13,5 – 8 = 5,5(m)
	Đáp số 5,5 m
Bài 10 : Cái bể chứa nước nhà em có hình chữ nhật, đo trong lòng bể được chiều dài 1,5 m, chiều rộng là 1,2 m và chiều cao là 0,9 m. Bể đã hết nước, chị em vừa đổ vào bể 30 gánh nước mỗi gánh 45 lít. Hỏi mặt nước còn cách miệng bể bao nhiêu và cần đổ thêm bao nhiêu gánh nước nữa để đầy bể ?
	Giải :
	Số lít nước đã đổ vào bể là :
	45 x 30 = 1350 (lít)
	= 1350 dm3 = m1,35 m3
	Diện tích đáy bể là :
	1,5 x 1,2 = 1,8 (m2)
	Mặt nước cách đáy bể là :
	1,35 : 1,8 = 0,75 (m)
	Mặt nước trong bể cách miệng bể là :
 	0,9 – 0,75 = 0,15 (m)
	Thể tích bể là :
	1,8 x 0,9 = 1,62 (m3) = 1620 lít
	Số gánh nước cần đổ đầy bể là :
	1620 : 45 = 36 (gánh)
	Để đầy bể cần đổ thêm là :
	36 – 30 = 6 (gánh)
	Đáp số 0,15 m và 6 gánh.
Bài 11 : Xếp 8 hình lập phương nhỏ có cạnh 4 cm thành một hình lập phương lớn rồi sơn tất cả các cạnh của hình lập phương lớn. Hỏi mỗi hình lập phương nhỏ có mấy mặt được sơn và diện tích được sơn của mỗi HLP nhỏ là bao nhiêu?
	Giải :
	Xếp 8 HLP nhỏ thành 1 HLP lớn gồm 2 tầng, mỗi tầng gồm 4 hình lập phương nhỏ, vì thế mỗi HLP nhỏ đều có 3 mặt được ghép với các hình lập phương khác. Các mặt được ghép không được sơn. Vì HLP có 6 mặt nên số mặt được sơn là :
	6 – 3 = 3 (mặt)
	Diện tích một mặt của HLP nhỏ là :
	4 x 4 = 16 (cm2)
	Diện tích mỗi HLP nhỏ được sơn là :
	16 x 3 = 48 (cm2)
	Đáp số 48 cm2
Bài 12 : Người ta xẻ 1 khúc gỗ hình trụ dài 5 m có đường kính đáy 0,6 m thành 1 khối hình hộp chữ nhật có đáy là hình vuông và đường chéo của đáy bằng đường kính của khúc gỗ. Tính thể tích của 4 tấm bìa gỗ được xẻ ra?
	Giải :
	Ta chia đáy của khúc gỗ HHCN thành 2 tam giác có diện tích bằng nhau. Mỗi tam giác có một cạnh đáy bằng đường kính của khúc gỗ và chiều cao của tam giác ứng với cạnh đáy đó bằng
	0,6 : 2 = o,3 (m)
	Diện tích tam giác là :
	 = 0,09 (m2)
	Diện tích của khúc gỗ HHCN là :
	0,09 x 2 = 0,18 (m2)
	Thể tích khối gỗ HHCN là :
	0,18 x 5 = 0,9 (m3)
	Thể tích khúc gỗ hình trụ là :
	0,3 x 0,3 x 3,14 x 5 = 1,413 (m3)
	Thể tích 4 tấm được xẻ ra là :
	1,413 – 0,9 = 0,513 (m3)
	Đáp số 0,513 m3
Bài 13 : Diện tích toàn phần 1 cái hộp không có nắp hình lập phương là 500 cm2. Tính cạnh cái hộp đó. Nếu tăng cạnh hộp này lên 2 lần thì diện tích toàn phần tăng lên mấy lần ?
	Giải :	Diện tích 1 mặt là :	 500 : 5 = 100 (cm2)
	Vì 100 = 10 x 10 nên cạnh HLP là 10 cm :
	Cạnh hộp khi tăng lên 2 lần là : 10 x 2 = 20 (cm)
	Diện tích toàn phần của hộp mới là :
	(20 x 20) x 5 = 2000 (cm2)
	So với trước diện tích toàn phần tăng số lần là :
	2000 : 500 = 4 (lần)
	Đáp số 4 lần.
Bài 14 : Tính thể tích hình lập phương biết diện tích toàn phần và diện tích xung quanh của hình đó là 128 cm2.
	Giải :
Hiệu diện tích toàn phần và diện túch xung quanh bằng 2 lần diện tích đáy.
	Vậy diện tích đáy là: 128 : 2 = 64 (cm2)
	Vì 64 = 8 x 8 Þ cạnh HLP là 8 cm :
	Thể tích hình lập phương là :
	8 x 8 x 8 = 512 (cm3)
	Đáp số 512 cm3
Bài 9 : Cho (1), (2), (3), (4) là các hình thang vuông có kích thước bằng nhau. Biết rằng PQ = 4 cm. Tính diện tích hình chữ nhật ABCD. 
Bài giải : Vì các hình thang vuông PQMA, QMBC, QPNC, PNDA bằng nhau nên : MQ = NP = QP = 4 cm và CN = AD. 
Mặt khác AD = NP + QM = 4 + 4 = 8 (cm) 
Do đó : CN = AD = 8 cm. 
Diện tích hình thang vuông PQCN là : (CN + PQ) x NP : 2 = (8 + 4) x 4 : 2 = 24 (cm2) 
Suy ra : Diện tích hình chữ nhật ABCD là : 24 x 4 = 96 (cm2) 
Bài 15 : Một thửa ruộng hình chữ nhật được chia thành 2 mảnh, một mảnh nhỏ trồng rau và mảnh còn lại trồng ngô (hình vẽ). Diện tích của mảnh trồng ngô gấp 6 lần diện tích của mảnh trồng rau. Chu vi mảnh trồng ngô gấp 4 lần chu vi mảnh trồng rau. Tính diện tích thửa ruộng ban đầu, biết chiều rộng của nó là 5 mét. 
Bài giải : Diện tích mảnh trồng ngô gấp 6 lần diện tích mảnh trồng rau mà hai mảnh có chung một cạnh nên cạnh còn lại của mảnh trồng ngô gấp 6 lần cạnh còn lại của mảnh trồng rau. Gọi cạnh còn lại của mảnh trồng rau là a thì cạnh còn lại của mảnh trồng ngô là a x 6. Vì chu vi mảnh trồng ngô (P1) gấp 4 lần chu vi mảnh trồng rau (P2) nên nửa chu vi mảnh trồng ngô gấp 4 lần nửa chu vi mảnh trồng rau. 
Nửa chu vi mảnh trồng ngô hơn nửa chu vi mảnh trồng rau là : a x 6 + 5 - (a + 5) = 5 x a. 
Ta có sơ đồ : 
Độ dài cạnh còn lại của mảnh trồng rau là : 5 x 3 : (5 x a - 3 x a) = 7,5 (m) 
Độ dài cạnh còn lại của mảnh trồng ngô là : 7,5 x 6 = 45 (m) 
Diện tích thửa ruộng ban đầu là : (7,5 + 4,5) x 5 = 262,5 (m2) 
Bài 24 : Một khu vườn hình chữ nhật có chu vi 120 m. Người ta mở rộng khu vườn như hình vẽ để được một vườn hình chữ nhật lớn hơn. Tính diện tích phần mới mở thêm. 
Bài giải : Nếu ta “dịch chuyển” khu vườn cũ ABCD vào một góc của khu vườn mới EFHD ta được hình vẽ bên. Kéo dài EF về phía F lấy M sao cho FM = BC thì diện tích hình chữ nhật BKHC đúng bằng diện tích hình chữ nhật FMNK. Do đó phần diện tích mới mở thêm chính là diện tích hình chữ nhật EMNA. 
Ta có AN = AB + KN + BK vì AB + KN = 120 : 2 = 60 (m) ; BK = 10 m nên AN = 70 m. Vậy diện tích phần mới mở thêm là : 70 x 10 = 700 (m2) 
Bài 26 : Một hình chữ nhật có chiều dài gấp 4 lần chiều rộng. Nếu tăng chiều rộng thêm 45 m thì được hình chữ nhật mới có chiều dài vẫn gấp 4 lần chiều rộng. Tính diện tích hình chữ nhật ban đầu. 
Bài giải : Khi tăng chiều rộng thêm 45 m thì khi đó chiều rộng sẽ trở thành chiều dài của hình chữ nhật mới, còn chiều dài ban đầu sẽ trở thành chiều rộng của hình chữ nhật mới. Theo đề bài ta có sơ đồ : 
Do đó 45 m ứng với số phần là : 
16 - 1 = 15 (phần) 
Chiều rộng ban đầu là : 
45 : 15 = 3 (m) 
Chiều dài ban đầu là : 3 x 4 = 12 (m) 
Diện tích hình chữ nhật ban đầu là : 
3 x 12 = 36 (m2) 
Bài 27: Bạn An đã có một số bài kiểm tra, bạn đó tính rằng : Nếu được thêm ba điểm 10 và ba điểm 9 nữa thì điểm trung bình của tất cả các bài sẽ là 8. Nếu được thêm một điểm 9 và hai điểm 10 nữa thì điểm trung bình của tất cả các bài là 7,5. Hỏi bạn An đã có tất cả mấy bài kiểm tra ? 
Bài giải : 
Nếu được thêm ba điểm 10 và ba điểm 9 nữa thì số điểm được thêm là : 
10 x 3 + 9 x 3 = 57 (điểm) 
Để được điểm trung bình của tất cả các bài là 8 thì số điểm phải bù thêm vào cho các bài đã kiểm tra là : 
57 - 8 x (3 + 3) = 9 (điểm) 
Nếu được thêm một điểm 9 và hai điểm 10 nữa thì số điểm được thêm là : 
9 x 1 + 10 x 2 = 28 (điểm) 
Để được điểm trung bình của tất cả các bài là 7,5 thì số điểm phải bù thêm vào cho các bài đã kiểm tra là : 
29 - 7,5 x (1 + 2) = 6,5 (điểm) 
Như vậy khi tăng điểm trung bình của tất cả các bài từ 7,5 lên 8 thì tổng số điểm của các bài đã kiểm tra sẽ tăng lên là : 
9 - 6,5 = 2,5 (điểm) 
Hiệu hai điểm trung bình là : 
8 - 7,5 = 0,5 (điểm) 
Vậy số bài đã kiểm tra của bạn An là : 
2,5 : 0,5 = 5 (bài) 
Bài 28 : Bạn hãy cắt một hình vuông có diện tích bằng 5 / 8 diện tích của một tấm bìa hình vuông cho trước. 
Bài giải : 
Chia cạnh tấm bìa hình vuông cho trước làm 4 phần bằng nhau (bằng cách gấp đôi liên tiếp). Sau đó cắt theo các đường AB, BC, CD, DA. Các miếng bìa AMB, BNC, CPD, DQA xếp trùng khít lên nhau nên AB = BC = CD = DA (có thể kiểm tra bằng thước đo). Dùng êke kiểm tra các góc của tấm bìa ABCD ta thấy các góc là vuông. 
Nếu kẻ bằng bút chì các đường chia tấm bìa ban đầu thành những ô vuông như hình vẽ thì ta có thể thấy : 
+ Diện tích tấm bìa MNPQ là 16 ô vuông (ghép 2 hình tam giác với nhau thì được hình chữ nhật gồm 3 hình vuông). 
Do đó diện tích hình vuông ABCD là 16 – 6 = 10 (ô vuông) nên diện tích ô vuông ABCD bằng 10 / 16 = 5 / 8 diện tích tấm bìa ban đầu. 
Bài 29 : Một mảnh đất hình chữ nhật được chia thành 4 hình chữ nhật nhỏ hơn có diện tích được ghi như hình vẽ. Bạn có biết diện tích hình chữ nhật còn lại có diện tích là bao nhiêu hay không ? 
Bài giải : Hai hình chữ nhật AMOP và MBQO có chiều rộng bằng nhau và có diện tích hình MBQO gấp 3 lần diện tích hình AMOP (24 : 8 = 3 (lần)), do đó chiều dài hình chữ nhật MBQO gấp 3 lần chiều dài hình chữ nhật AMOP 
(OQ = PO x 3). (1) 
Hai hình chữ nhật POND và OQCN có chiều rộng bằng nhau và có chiều dài hình OQCN gấp 3 lần chiều dài hình POND (1). Do đó diện tích hình OQCN gấp 3 lần diện tích hình POND. 
Vậy diện tích hình chữ nhật OQCD là : 16 x 3 = 48 (cm2). 
Bài 30 : Cho A = 2004 x 2004 x ... x 2004 (A gồm 2003 thừa số) và B = 2003 x 2003 x ... x 2003 (B gồm 2004 thừa số). Hãy cho biết A + B có chia hết cho 5 hay không ? Vì sao ? 
Bài giải : 
A = (2004 x 2004 x ... x 2004) x 2004 = C x 2004 (C có 2002 thừa số 2004). C có tận cùng là 6 nhân với 2004 nên A có tận cùng là 4 (vì 6 x 4 = 24). 
 B = 2003 x 2003 x ... x 2003 (gồm 2004 thừa số) = (2003 x 2003 x 2003 x 2003) x ... x (2003 x 2003 x 2003 x 2003). Vì 2004 : 4 = 501 (nhòm) nên B có 501 nhóm, mỗi nhóm gồm 4 thừa số 2003. Tận cùng của mỗi nhóm là 1 (vì 3 x 3 = 9 ; 9 x 3 = 27 ; 27 x 3 = 81). Vậy tận cùng của A + B là 4 + 1 = 5. Do đó A + B chia hết cho 5.
Bài 31 : Biết rằng số A chỉ viết bởi các chữ số 9. Hãy tìm số tự nhiên nhỏ nhất mà cộng số này với A ta được số chia hết cho 45. 
Bài giải : 
Cách 1 : A chỉ viết bởi các chữ số 9 nên: 
Vậy A chia cho 45 dư 9. Một số nhỏ nhất mà cộng với A để được số chia hết cho 45 thì số đó cộng với 9 phải bằng 45. 
Vậy số đó là : 45 - 9 = 36. 
Cách 2 : Gọi số tự nhiên nhỏ nhất cộng vào A là m. Ta có A + m là số chia hết cho 45 hay chia hết cho 5 và 9 (vì 5 x 9 = 45 ; 5 và 9 không cùng chia hết cho một số số nào đó khác 1). Vì A viết bởi các chữ số 9 nên A chia hết cho 9, do đó m chia hết cho 9. A + m chia hết cho 5 khi A + m có tận cùng là 0 hoặc 5 mà A có tận cùng là 9 nên m có tận cùng là 1 hoặc 6. Số nhỏ nhất có tận cùng là 1 hoặc 6 mà chia hết cho 9 là 36. 
Vậy m = 36. 
Bài 32 : Cho một hình thang vuông có đáy lớn bằng 3 m, đáy nhỏ và chiều cao bằng 2 m. Hãy chia hình thang đó thành 5 hình tam giác có diện tích bằng nhau. Hãy tìm các kiểu chia khác nhau sao cho số đo chiều cao cũng như số đo đáy của tam giác đều là những số tự nhiên. 
Bài giải : Diện tích hình thang là : 
(3 + 2) x 2 : 2 = 5 (m2) 
Chia hình thang đó thành 5 tam giác có diện tích bằng nhau thì diện tích một tam giác là : 5 : 5 = 1 (m2). Các tam giác này có chiều cao và số đo đáy là số tự nhiên nên nếu chiều cao là 1m thì đáy là 2 m. Nếu chiều cao là 2 m thì đáy là 1 m. Có nhiều cách chia, TTT chỉ nêu một số cách chia sau : 
Bài 33 : Bạn hãy tính chu vi của hình có từ một hình vuông bị cắt mất đi một phần bởi một đường gấp khúc gồm các đoạn song song với cạnh hình vuông. 
Bài giải : Ta kí hiệu các điểm như hình vẽ sau : 
Nhìn hình vẽ ta thấy : 
CE + GH + KL + MD = CE + EI = CI. 
EG + HK + LM + DA = ID + DA = IA. 
Từ đó chu vi của hình tô màu chính là : 
AB + BC + CE + EG + GH + HK + KL + LM + MD + DA = AB + BC + (CE + GH + KL + MD) + (EG + HK + LM + DA) = AB + BC + CI + IA = AB x 4. 
Vậy chu vi của hình tô màu là : 
10 x 4 = 40 (cm). 
Bài 34 : Cho băng giấy gồm 13 ô với số ở ô thứ hai là 112 và số ở ô thứ bảy là 215. 
Biết rằng tổng của ba số ở ba ô liên tiếp luôn bằng 428. Tính tổng của các chữ số trên băng giấy đó. 
Bài giải : Ta chia các ô thành các nhóm 3 ô, mỗi nhóm đánh số thứ tự như sau : 
Tổng các số của mỗi nhóm 3 ô liên tiếp là 428. Như vậy ta thấy các số viết ở ô số 1 là 215, ở ô số 2 là 112, ở ô số 3 là : 
428 - (215 + 112) = 101. 
Ta có băng giấy ghi số như sau : 
Tổng các chữ số của mỗi nhóm 3 ô là : 
2 + 1 + 5 + 1 + 1 + 2 + 1 + 0 + 1 = 14. 
Có tất cả 4 nhóm 3 ô và một số ở ô số 1 nên tổng các chữ số trên băng giấy là : 14 x 4 + 2 + 1 + 5 = 64. 
Bài 35 : Tuổi của em tôi hiện nay bằng 4 lần tuổi của nó khi tuổi của anh tôi bằng tuổi của em tôi hiện nay. Đến khi tuổi của em tôi bằng tuổi của anh tôi hiện nay thì tổng số tuổi của hai anh em là 51. Hỏi hiện nay anh tôi, em tôi bao nhiêu tuổi ? 
Bài giải : Hiệu số tuổi của hai anh em là một số không đổi. 
Ta có sơ đồ biểu diễn số tuổi của hai anh em ở các thời điểm : Trước đây (TĐ), hiện nay (HN), sau này (SN) : 
Giá trị một phần là : 
51 : (7 + 10) = 3 (tuổi) 
Tuổi em hiện nay là : 
3 x 4 = 12 (tuổi) 
Tuổi anh hiện nay là : 
3 x 7 = 21 (tuổi) 
Bài 36 : Tham gia SEA Games 22 môn bóng đá nam vòng loại ở bảng B có bốn đội thi đấu theo thể thức đấu vòng tròn một lượt và tính điểm theo quy định hiện hành. Kết thúc vòng loại, tổng số điểm các đội ở bảng B là 17 điểm. Hỏi ở bảng B môn bóng đá nam có mấy trận hòa ? 
Bài giải : 
Bảng B có 4 đội thi đấu vòng tròn nên số trận đấu là : 4 x 3 : 2 = 6 (trận) 
Mỗi trận thắng thì đội thắng được 3 điểm đội thua thì được 0 điểm nên tổng số điểm là : 3 + 0 = 3 (điểm). Mỗi trận hòa thì mỗi đội được 1 điểm nên tổng số điểm là : 1 + 1 = 2 (điểm). 
Cách 1 : Giả sử 6 trận đều thắng thì tổng số điểm là : 6 x 3 = 18 (điểm). Số điểm dôi ra là : 18 - 17 = 1 (điểm). Sở dĩ dôi ra 1 điểm là vì một trận thắng hơn một trận hòa là : 3 - 2 = 1 (điểm). Vậy số trận hòa là : 1 : 1 = 1 (trận) 
Cách 2 : Giả sử 6 trận đều hòa thì số điểm ở bảng B là : 6 x 2 = 12 (điểm). Số điểm ở bảng B bị hụt đi : 17 - 12 = 5 (điểm). Sở dĩ bị hụt đi 5 điểm là vì mỗi trận hòa kém mỗi trận thắng là : 3 - 2 = 1 (điểm). Vậy số trận thắng là : 5 : 1 = 5 (trận). Số trận hòa là : 6 - 5 = 1 (trận). 
Bài 37 : Một cửa hàng có ba thùng A, B, C để đựng dầu. Trong đó thùng A đựng đầy dầu còn thùng B và C thì đang để không. Nếu đổ dầu ở thùng A vào đầy thùng B thì thùng A còn 2/5 thùng. Nếu đổ dầu ở thùng A vào đầy thùng C thì thùng A còn 5/9 thùng. Muốn đổ dầu ở thùng A vào đầy cả thùng B và thùng C thì phải thêm 4 lít nữa. Hỏi mỗi thùng chứa bao nhiêu lít dầu ? 
Bài giải : 
So với thùng A thì thùng B có thể chứa được số dầu là : 
1 - 2/5 = 3/5 (thùng A). 
Thùng C có thể chứa được số dầu là : 
1 - 5/9 = 4/9 (thùng A). 
Cả 2 thùng có thể chứa được số dầu nhiều hơn thùng A là : 
(3/5 + 4/9) - 1 = 2/45 (thùng A). 
2/45 số dầu thùng A chính là 4 lít dầu. 
Do đó số dầu ở thùng A là : 
4 : 2/45 = 90 (lít). 
Thùng B có thể chứa được là : 
90 x 3/5 = 54 (lít). 
Thùng C có thể chứa được là : 
90 x 4/9 = 40 (lít). 
Bài 38 : Hải hỏi Dương : “Anh phải hơn 30 tuổi phải không ?”. Anh Dương nói : “Sao già thế ! Nếu tuổi của anh nhân với 6 thì được số có ba chữ số, hai chữ số cuối chính là tuổi anh”. Các bạn cùng Hải tính tuổi của anh Dương nhé.
Bài giải : 
Cách 1 : Tuổi của anh Dương không quá 30, khi nhân với 6 sẽ là số có 3 chữ số. Vậy chữ số hàng trăm của tích là 1. Hai chữ số cuối của số có 3 chữ số chính là tuổi anh. Vậy tuổi anh Dương khi nhân với 6 hơn tuổi anh Dương là 100 tuổi. Ta có sơ đồ : 
Tuổi của anh Dương là : 
100 : (6 - 1) = 20 (tuổi) 
Cách 2 : Gọi tuổi của anh Dương là (a > 0, a, b là chữ số) 
Vì không quá 30 nên khi nhân với 6 sẽ được số có ba chữ số mà chữ số hàng trăm là 1. Ta có phép tính : 
Vậy tuổi của anh Dương là 20. 
Bài 39 : ở SEA Games 22 vừa qua, chị Nguyễn Thị Tĩnh giành Huy chương vàng ở cự li 200 m. Biết rằng chị chạy 200 m chỉ mất giây. Bạn hãy cho biết chị chạy 400 m hết bao nhiêu giây ? 
Bài giải : 
Kết quả thi đấu ở SEA Games 22 đã cho biết : Chị Nguyễn Thị Tĩnh chạy cự li 400 m với thời gian là 51 giây 82. 
Nhận xét : Dụng ý của người ra đề là muốn các bạn giải toán lưu ý đến tính thực tế của đề toán. Đề toán đọc lên cứ như là loại toán về tương quan tỉ lệ thuận. Đa số các bạn đều tưởng như vậy nên đã giải sai, ra đáp số là giây (!). 
Bài 40 : Hãy khám phá “bí mật” của hình vuông rồi điền nốt bốn số tự nhiên còn thiếu vào ô trống.
Bài giải : “Bí mật” của hình vuông là tổng các số hàng ngang, hàng dọc và đường chéo của hình vuông đều bằng 34 (các bạn tự kiểm tra lại). 
Gọi các số cần tìm ở 4 góc của hình vuông là a, b, c, d. ở hàng ngang đầu tiên, ta có : a + 3 + 2 + b = 34, từ đó a + b = 34 - 5 = 29 (1). 
ở cột dọc đầu tiên ta có : a + 5 + 9 + d = 34, từ đó a + d = 34 - 14 = 20 (2). 
Từ (1) và (2) ta có : a + b - (a + d) = 29 - 20 = 9 hay b - d = 9 (3). 
ở một đường chéo, ta lại có : b + 6 + 11 + d = 34, từ đó b + d = 34 - 17 = 17 (4). 
Từ (3) và (4) ta có : (b - d) + (b + d) = 9 + 17 hay b + b = 26 ; b = 13. 
Vì b + d = 17 nên d = 17 - 13 = 4. 
Vì a + b = 29 nên a = 29 - 13 = 16. 
ở đường chéo thứ hai, ta có a + 10 + 7 + c = 34 hay a + c = 34 - 17 = 17. 
Từ đó c = 17 - 16 = 1. Thay a, b, c, d bằng các số vừa tìm được ta có hình vuông sau : 
Nhận xét : Hình vuông trên gọi là hình vuông kì ảo (hoặc ma phương) cấp 4. Người ta đã nhìn thấy nó lần đầu tiên trong bản khắc của họa sĩ Đuy-rơ năm 1514. Các bạn có thể thấy : Tổng bốn số trong bốn ô ở bốn góc cũng bằng 34.
Bài 41 : Bạn có thể cắt hình này : 
thành 16 hình: 
Bạn hãy nói rõ cách cắt nhé ! 
Bài giải : Tổng số ô vuông là : 
8 x 8 = 64 (ô) 
Khi ta cắt hình vuông ban đầu thành các phần nhỏ (hình chữ T), mỗi phần gồm 4 ô vuông thì sẽ được số hình là : 64 : 4 = 16 (hình) 
Ta có thể cắt theo nhiều cách khác nhau. Xin nêu một cách cắt như sau :
Bài 42 : Cho hình vuông như hình vẽ. Em hãy thay các chữ bởi các số thích hợp sao cho tổng các số ở các ô thuộc hàng ngang, cột dọc, đường chéo đều bằng nhau.
Bài giải : Vì tổng các số ở hàng ngang, cột dọc, đường chéo đều bằng nhau nên ta có :
a + 35 + b = a + 9 + d hay 26 + b = d (cùng trừ 2 vế đi a và 9). Do đó d - b = 26. b + g + d = 35 + g + 13 hay b + d = 48. Vậy b = (48 - 26 ) : 2 = 11, d = 48 - 11 = 37. d + 13 + c = d + 9 + a hay 4 + c = a (cùng trừ 2 vế đi d và 9). Do đó a - c = 4, a + g + c = 9 + g +39 hay a + c = 9 + 39 (cùng trừ 2 vế đi g), do đó a + c = 48. Vậy c = (48 - 4) : 2 = 22, a = 22 + 4 = 26. 35 + g + 13 = a + 35 + b = 26 + 35 + 11 = 72. Do đó 48 + g = 72 ; g = 72 - 48 = 24. Thay a = 26, b = 11, c = 22, d =37 , g = 24 vào hình vẽ ta có :
Bài 43 : Số chữ số dùng để đánh số trang của một quyển sách bằng đúng 2 lần số trang của cuốn sách đó. Hỏi cuốn sách đó có bao nhiêu trang ?
Bài giải : Để số chữ số bằng đúng 2 lần số trang quyển sách thì trung bình mỗi trang phải dùng hai chữ số. Từ trang 1 đến trang 9 có 9 trang gồm một chữ số, nên còn thiếu 9 chữ số. Từ trang 10 đến trang 99 có 90 trang, mỗi trang đủ hai chữ số. Từ trang 100 trở đi mỗi trang có 3 chữ số, mỗi trang thừa một chữ số, nên 

File đính kèm:

  • docBo de on thi HSG lop 5 voi cac dang toan hay.doc