Bồi dưỡng học sinh giỏi Toán 6

Bài toỏn 3 : Cho A = 1.2 + 2.3 + 3.4 + 4.5 + 5.6 + 6.7 + 7.8 + 8.9 + 9.10

 C = A + 10.11. Tớnh giỏ trị của C.

Giải :

 Theo cỏch tớnh A của bài toỏn 2, ta được kết quả là : C = 10.11.12/3

 Theo cách giải 2 của bài toỏn 2, ta lại có :

C = 1.2 + 2.3 + 3.4 + 4.5 + 5.6 + 6.7 + 7.8 + 8.9 + 9.10 + 10.11

 = (1.2 + 2.3) + (3.4 + 4.5) + (5.6 + 6.7) + (7.8 + 8.9) + (9.10 + 10.11)

 = 2( 1 + 3) + 4( 3 + 5) + 6( 5 + 7) + 8 ( 7 + 9) + 10( 9 + 11)

 = 2.4 + 4.8 + 6.12 + 8.16 + 10.20 = 2.2.2 + 2.4.4 + 2.6.6 + 2.8.8 + 2.10.10

 = 2.22 + 2.42 + 2.62 + 2.82 + 2.102 = 2.( 22 + 42 + 62 + 82 + 102)

Vậy C = 2.(22 + 42 + 62 + 82 + 102) = 10.11.12/3 .Từ đó ta có :

 22 + 42 + 62 + 82 + 102 = 10.11.12/6

 

doc14 trang | Chia sẻ: tuongvi | Lượt xem: 3070 | Lượt tải: 1download
Bạn đang xem nội dung tài liệu Bồi dưỡng học sinh giỏi Toán 6, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Bài tập khác : Chứng minh rằng :
A = 2 + 22 + 23 + 24 + …+ 260 chia hết cho 21 và 15
B = 1 + 3 + 32 + 33 + 34+ … + 311 chia hết cho 52
C = 5 + 52 + 53 + 54 + …+ 512 chia hết cho 30 và 31
Bài toỏn 3 : Tớnh tổng A = 1.2 + 2.3 + 3.4 + 4.5 + 5.6 + 6.7 + 7.8 + 8.9 + 9.10 
Lời giải 1 :
Nhận xột : Khoảng cỏch giữa 2 thừa số trong mỗi số hạng là 1. Nhõn 2 vế của A với 3 lần khoảng cỏch này ta được :
3A = 3.(1.2 + 2.3 + 3.4 + 4.5 + 5.6 + 6.7 + 7.8 + 8.9 + 9.10)
 = 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + 4.5.(6 - 3) + 5.6.(7 - 4) + 6.7.(8 - 5) + 7.8.(9 - 6) + 8.9.(10 - 7) + 9.10.(11 - 8) 
 = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + 3.4.5 - … + 8.9.10 - 8.9.10 + 9.10.11
 = 9.10.11 = 990. 
A = 990/3 = 330 
Ta chỳ ý tới đỏp số 990 = 9.10.11, trong đú 9.10 là số hạng cuối cựng của A và 11 là số tự nhiờn kề sau của 10, tạo thành tớch ba số tự nhiờn liờn tiếp. Ta có kết quả tổng quát sau : 
 A = 1.2 + 2.3 + … + (n - 1).n = (n - 1).n.(n + 1)/3 
Lời giải khỏc :
Lời giải 2 :
3.A = 3.(1.2 + 2.3 + 3.4 + 4.5 + 5.6 + 6.7 + 7.8 + 8.9 + 9.10) 
= 3.(0.1 + 1.2 + 2.3 + 3.4 + 4.5 + 5.6 + 6.7 + 7.8 + 8.9 + 9.10) 
= [1.(0 + 2) + 3.(2 + 4) + 5.(4 + 6) + 7.(6 + 8) + 9.(8 + 10)].3
 = 3.(1.1.2 + 3.3.2 + 5.5.2 + 7.7.2 +9.9.2) = (12 + 32 + 52 + 72 + 92).2.3 
= (12 + 32 + 52 + 72 + 92).6 = 990 = 9.10.11
Ta chưa biết cỏch tớnh tổng bỡnh phương cỏc số lẻ liờn tiếp bắt đầu từ 1, nhưng liờn hệ với lời giải 1, ta cú : 
(12 + 32 + 52 + 72 + 92).6 = 9.10.11, hay 
(12 + 32 + 52 + 72 + 92) = 9.10.11/6 
Ta cú kết quả tổng quỏt : 
P = 12 + 32 + 52 + 72 + … + (2n + 1)2 = (2n + 1)(2n + 2)(2n + 3)/6 
Bài tập vận dụng : Tớnh các tổng sau : 
P = 12 + 32 + 52 + 72 + ... + 992 
Q = 112 + 132 + 152 + … + 20092. 
M = 1.2 + 2.3 + 3.4 + 4.5 + .... + 99.100
Bài toỏn 3 : Cho A = 1.2 + 2.3 + 3.4 + 4.5 + 5.6 + 6.7 + 7.8 + 8.9 + 9.10 
 C = A + 10.11. Tớnh giỏ trị của C. 
Giải :
 Theo cỏch tớnh A của bài toỏn 2, ta được kết quả là : C = 10.11.12/3 
 Theo cách giải 2 của bài toỏn 2, ta lại có : 
C = 1.2 + 2.3 + 3.4 + 4.5 + 5.6 + 6.7 + 7.8 + 8.9 + 9.10 + 10.11 
 = (1.2 + 2.3) + (3.4 + 4.5) + (5.6 + 6.7) + (7.8 + 8.9) + (9.10 + 10.11) 
 = 2( 1 + 3) + 4( 3 + 5) + 6( 5 + 7) + 8 ( 7 + 9) + 10( 9 + 11)
 = 2.4 + 4.8 + 6.12 + 8.16 + 10.20 = 2.2.2 + 2.4.4 + 2.6.6 + 2.8.8 + 2.10.10 
 = 2.22 + 2.42 + 2.62 + 2.82 + 2.102 = 2.( 22 + 42 + 62 + 82 + 102)
Vậy C = 2.(22 + 42 + 62 + 82 + 102) = 10.11.12/3 .Từ đó ta có :
	22 + 42 + 62 + 82 + 102 = 10.11.12/6
Ta lại cú kết quả tổng quỏt là :
22 + 42 + 62 + …+ (2n)2 = 2n.(2n + 1).(2n + 2)/6 
Bài tập áp dụng : 
Tớnh tổng : 202 + 222 + … + 482 + 502. 
Cho n thuộc N*. Tớnh tổng : 
n2 + (n + 2)2 + (n + 4)2 + … + (n + 100)2. 
Hướng dẫn giải : Xột hai trường hợp n chẵn và n lẻ .Bài toỏn cú một kết quả duy nhất, khụng phụ thuộc vào tớnh chẵn lẻ của n. 
3.Tính tổng A = 1.2 + 2.3 + 3.4 + 4.5 + …+ 999.1000
Bài toỏn 4 : Chứng minh rằng : 
12 + 22 + 32 + … + n2 = n.(n + 1)(2n + 1)/6 
Lời giải 1 :
Xột trường hợp n chẵn : 
12 + 22 + 32 + … + n2 = (12 + 32 + 52 + … + (n – 1)2) + (22 + 42 + 62 + … + n2)
= [(n – 1).n.(n + 1) + n.(n + 1).(n + 2)]/6 
= n.(n + 1).(n -1 + n + 2)/6 = n.(n + 1).(2n + 1)/6 
Tương tự với trường hợp n lẻ, ta cú 
12 + 22 + 32 + … + n2 = (12 + 32 + 52 + … + n 2) + (22 + 42 + 62 + … + (n – 1)2)
= n(n + 1)(n + 2)/6 + (n – 1)n(n + 1)/6
= n(n + 1)(n + 2 + n – 1)/6 
= n(n + 1)( 2n + 1) /6 ( đpcm)
Lời giải 2 :
S = 1² + 2² + 3² + 4² +…+ n²
S = 1.1 + 2.2 + 3.3 +4.4 + … + n.n = 1.(2-1) + 2(3-1) + 3(4-1) + 4(5-1) + …n[(n+1)-1] 
 = 1.2 – 1+ 2.3 – 2 + 3.4 – 3 + 4.5 – 4 +…+ n(n + 1 ) – n 
 = 1.2 + 2.3 + 3.4 + 4.5 + …+ n( n + 1 ) – ( 1 + 2 + 3 +4 + … + n )
 = nn+1(n+2)3 - n(n+1)2 = n( n + 1 ).(n+23-12 ) = n( n + 1)2n+4-36 
Vậy S = nn+1(2n+1)6
Vậy ta có công thức tính tổng của dãy số chính phương bắt đầu từ 1 là :
	12 + 22 + 32 + … + n2 = n.(n + 1)(2n + 1)/6 
Bài tập áp dụng : Tớnh giỏ trị của các biểu thức sau:
	N = 1 + 22 + 32 + 42 + 52 + …+ 992
	A = 1 + 4 + 9 + 16 + 25 + 36 + ... + 10000 
B = - 12 + 22 – 32 + 42 - … - 192 + 202. 
Gợi ý:
Tỏch B = (22 + 42 + … + 202) – (12 + 32 + …+ 192) ; tớnh tổng cỏc số trong mỗi ngoặc đơn rồi tỡm kết quả của bài toỏn. 
Bài toán 5 . Tính : A = 1.3 + 3.5 + 5.7 + … + 97.99
Giải
Nhận xột : Khoảng cỏch giữa hai thừa số trong mỗi số hạng là 2 , nhõn hai vế của A với 3 lần khoảng cỏch này ta được :
6A = 1.3.6 + 3.5.6 + 5.7.6 + … + 97.99.6
 = 1.3.(5 + 1) + 3.5.(7 - 1) + 5.7(9 - 3) + … + 97.99(101 - 95)
 = 1.3.5 + 1.3 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7 + … + 97.99.101 - 95.97.99
 = 1.3.5 + 3 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7 + … + 97.99.101 - 95.97.99
 = 3 + 97.99.101
 = 161 651
 Trong bài toán 2 ta nhân A với 3. Trong bài toán 5 ta nhân A với 6 Ta có thể nhận thấy để làm xuất hiện các hạng tử đối nhau ta nhân A với 3 lần khoảng cách k giữa 2 thừa số trong mỗi hạng tử.
Bài toỏn 6 : Tớnh A = 1.2.3 + 2.3.4 + 3.4.5 + 4.5.6 + 5.6.7 + 6.7.8 + 7.8.9 + 8.9.10. 
Lời giải :
Trở lại bài toỏn 2. mỗi hạng tử của tổng A cú hai thừa số thỡ ta nhõn A với 3 lần khoảng cỏch giữa hai thừa số đú. Học tập cách đó , trong bài này ta nhõn hai vế của A với 4 lần khoảng cỏch đú vỡ ở đõy mỗi hạng tử cú 3 thừa số .Ta giải được bài toỏn như sau : 
A = 1.2.3 + 2.3.4 + 3.4.5 + 4.5.6 + 5.6.7 + 6.7.8 + 7.8.9 + 8.9.10
4A = (1.2.3 + 2.3.4 + 3.4.5 + 4.5.6 + 5.6.7 + 6.7.8 + 7.8.9 + 8.9.10).4
4A = [1.2.3.(4 – 0) + 2.3.4.(5 – 1) + … + 8.9.10.(11 – 7)] 
4A = (1.2.3.4 – 1.2.3.4 + 2.3.4.5 – 2.3.4.5 + … + 7.8.9.10 – 7.8.9.10 + 8.9.10.11) 4A = 8.9.10.11 = 1980. 
Từ đó ta cú kết quả tổng quỏt 
A = 1.2.3 + 2.3.4 + 3.4.5 + … + (n – 1).n.(n + 1).= (n -1).n.(n + 1)(n + 2)/4 
Bài tập áp dụng : Tính các tổng sau :
	A = 1.2.3 + 2.3.4 + 3.4.5 + ...+ 99.100.101
Bài toán 7 : Tính : A = 1.3.5 + 3.5.7 + … + 5.7.9 + … + 95.97.99
Giải :
8A = 1.3.5.8 + 3.5.7.8 + 5.7.9.8 + … + 95.97.99.8
= 1.3.5(7 + 1) + 3.5.7(9 - 1) + 5.7.9(11 - 3) + … + 95.97.99(101 - 93)
 = 1.3.5.7 + 15 + 3.5.7.9 - 1.3.5.7 + 5.7.9.11 - 3.5.7.9 + … + 95.97.99.101 - 93.95.97.99
 = 15 + 95.97.99.101
 = 11 517 600
Trong bài 6 ta nhân A với 4 (bốn lần khoảng cách). Trong bài 7 ta nhân A với 8 (bốn lần khoảng cách) vì mỗi hạng tử của A cũng có 3 thừa số. 
Bài toán 8 : Tính A = 1.2 + 3.4 + 5.6 + … + 99.100
Giải
A = 2 + ( 2+ 1).4 + ( 4 + 1)6 + … + (98 + 1).100
 = 2 + 2.4 + 4 + 4.6 + 6 + … + 98.100 + 100
 = (2.4 + 4.6 + … + 98.100 ) + (2 + 4 + 6 + 8 + … + 100)
 = 98.100.102 : 6 + 102.50:2
 = 166600 + 2550 
 = 169150
 Cách khác :
A = 1.(3 - 1) + 3(5 - 1) + 5(7 - 1) + … + 99(101 - 1)
 = 1.3 - 1 + 3.5 - 3 + 5.7 - 5 + … + 99.101 - 99
 = (1.3 + 3.5 + 5.7 + … + 99.101) - (1 + 3 + 5 + 7 + … + 99)
 = 171650 – 2500 
 = 169150
Trong bài toán này ta không nhân A với một số mà tách ngay một thừa số trong mỗi số hạng làm xuất hiện các dãy số mà ta đã biết cách tính hoặc dễ dàng tính được. 
Bài tập ỏp dụng
Tính A = 1.2.3 + 3.4.5 + 5.6.7 + … + 99.99.100
Giải :
 A = 1.3.( 5 – 3) + 3.5.( 7 – 3) + 5.7.( 9 - 3) + … + 99.101.( 103 – 3)
 = ( 1.3.5 + 3.5.7 + 5.7.9 + … + 99.101.103 ) – ( 1.3.3 + 3.5.3 + … + 99.101.3 )
 = ( 15 + 99.101.103.105): 8 – 3( 1.3 + 3.5 + 5.7 +… + 99.101) 
 = 13517400 – 3.171650 
 = 13002450
Tính A = 1.22 + 2.32 + 3.42 + … + 99.1002 
Giải :
A = 1.2.(3 - 1) + 2.3(4 - 1) + 3.4(5 - 1) + … + 99.100.(101 - 1)
 = 1.2.3 - 1.2 + 2.3.4 - 2.3 + 3.4.5 - 3.4 + … + 99.100.101 - 99.100
 = (1.2.3 + 2.3.4 + … + 99.100.101) - (1.2 + 2.3 + 3.4 + … + 99.100)
 = 25497450 – 333300
 = 25164150
Bài tập áp dụng :
Tính A = 12 + 42 + 72 + …. +1002.
Tính B = 1.32 + 3.52 + 5.72 + … + 97.992.
Tính A = 1.99 + 2.98 + 3.97 + … + 49.51+ 50.50
Tính B = 1.3 + 5.7 + 9.11 + … + 97.101 
Tính C = 1.3.5 – 3.5.7 + 5.7.9 – 7.9.11 + … - 97.99.101
Tính D = 1.99 + 3.97 + 5.95 + … + 49.51
Tính E = 1.33 + 3.53 + 5.73 + … + 49.513
Tính F = 1.992 + 2.982 + 3.972 + … + 49.512
Bài toán 9 :	 Tính tổng S = 1³ + 2³ + 3³ + 4³ + 5³ +… + n³
Lời giải :
Trước hết ta chứng minh một kờt quả sau đõy : với n là số tự nhiờn thỡ ta cú 
n2 – n = (n – 1)(n + 1) . Thật vậy : n2 – n = n( n2 – 1) = n( n2 – n + n – 1) = 
n[(n2 – n) + ( n – 1)] = n[n(n – 1) + ( n – 1)] = (n – 1)n( n + 1) đpcm
áp dụng kết quả trên để tính S
Ta cú S = 1³ + 2³ + 3³ + 4³ + 5³ +… + n³
S = 13 – 1 + 23 – 2 + 33 – 3 + 43 – 4 + 53 – 5 +…+ n3 – n + ( 1 + 2 + 3 + …+ n )
S = 0 + 2( 22 – 1 ) + 3( 32 – 1 ) + 4( 42 – 1 ) + …+ n( n2 – 1 ) + ( 1 + 2 + 3 + 4 + …+ n )
S = 0 + 1.2.3 + 2.3.4 + 3.4.5 + 4.5.6 + …+ (n – 1 )n( n + 1 ) + ( 1 + 2 + 3 + 4 + … + n )
 S = n-1nn+1(n+2)4+n(n+1)2=n(n+1)n-1(n+2)4+12 = 
= n( n + 1).n²+n-2+24 = n( n + 1 ).n( n+1 )4= n²(n+1)²2²=n(n+1)2²
	Nhận xột Vì n(n+1)2 = 1 + 2 + 3 + 4 + … + n , nên ta có kết quả rất quan trọng sau đây : 
1³ + 2³ + 3³ + 4³ + 5³ +… + n³ = ( 1 + 2 + 3 + 4 + 5 + … + n )²
Bài toán 10 : Tính các tổng sau :
 	a ) A = 9 + 99 + 999 + 9999 + ...+ 999…910 chữ số 9
	b ) B = 1 + 11 + 111 + 1111 + ... + 111…110 chữ số 1
	c ) C = 4 + 44 + 444 + 4444 + ... + 444…410 chữ số4
Giải :
A = 9 + 99 + 999 + 9999 + ...+ 999…910 chữ số 9
 = 101 – 1 + 102 – 1 + 103 – 1 + ... + 1010 – 1 = 101 + 102 + 103 + ... + 1010 – 10 
 = ( 101+ 102 + 103+ 104 + ... + 1010 ) – 10 = 111…1110 số 10 – 10 = 111…19 số 100
B = 1 + 11 + 111 + 1111 + ... + 111…1100 chữ số 1
 9B = 9.(1 + 11 + 111 + 1111 + ... + 111…110 chữ số 1) = 9 + 99 + 999 + ... + 999…910 chữ số 9
 9B = 111…19 số 100 ( Theo kết quả của câu a) 
Vậy B = 111…19 số 100 / 9
 c) C = 4 + 44 + 444 + 4444 + ... + 444…410 chữ số4 = 4(1 + 11 + 111 + 1111 + ... + 111…110 chữ số 1)
 9C = 9.4.( 1 + 11 + 111 + 1111 + ... + 111…110 chữ số 1) 
	= 4.( 9 + 99 + 999 + 9999 + ...+ 999…910 chữ số 9 ) = 4. 111…19 số 100 = 444…49 số 400 
	Vậy C = 444…49 số 400 / 9
Bài tập áp dụng :
Tính các tổng sau :
A = 2 + 22 + 222 + 2222 + ... + 222…210 chữ số2
B = 3 + 33 + 333 + 3333 + ... + 333…320 chữ số3
C = 5 + 55 + 555 + 5555 + ... + 555…510 chữ số 5
Bài toán 1. Tính A = 1.2 + 2.3 + 3.4 + … + 99.100
Để tính A ta biến đổi A để xuất hiện các hạng tử đối nhau. Muốn vậy ta cần tách một thừa số trong mỗi hạng tử thành một hiệu : a = b - c
Giải:
 3A = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3
 = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + … + 99.100. (101 - 98)
 = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100
 = 99.100.101
 A = 33.100.101 = 333 300
2) Một số dãy số dễ dàng tính được
1 + 2 + 3 + … + n
a + (a + k) + (a + 2k) + … + (a + nk) k là hằng số
II) Khai thác bài toán 1
Trong bài toán 1 . Các thừa số trong mỗi hạng tử hơn kém nhau 1 hay cách nhau 1 đơn vị. Thay đổi khoảng cách giữa các thừa số trong mỗi hạng tử ta có bài toán 2.
Bài toán 2 . Tính :A = 1.3 + 3.5 + 5.7 + … + 97.99
Giải 
6A = 1.3.6 + 3.5.6 + 5.7.6 + … + 97.99.6
 = 1.3.(5 + 1) + 3.5.(7 - 1) + 5.7(9 - 3) + … + 97.99(101 - 95)
 = 1.3.5 + 1.3 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7 + … 
 + 97.99.101 - 95.97.99
 = 1.3.5 + 3 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7 + …
 + 97.99.101 - 95.97.99
 = 3 + 97.99.101
 = 161 651
 Trong bài toán 1 ta nhân A với 3 (a = 3) . Trong bài toán 2 ta nhân A với 6 (a = 6). Ta có thể nhận thấy để làm xuất hiện các hạng tử đối nhau ta nhân A với 3 lần khoảng cách giữa 2 thừa số trong mỗi hạng tử.
3k n(n + k) = n(n + k)(r + 2k) - (n - k) n (n + k)
Thay đổi số các thừa số trong tích ta có bài toán 3 
Bài toán 3 : Tính A = 1.2.3 + 2.3.4 + … + 98.99.100
Giải :
4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + … + 98.99.100.4
 = 1.2.3.4 + 2.3.4(5 - 1) + 3.4.5(6 - 2) + … + 98.99.100(101 - 97)
 = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + … 
 + 98.99.100.101 - 97.98.99.100
 = 98.99.100.101
 A = 98.99.25.101 
 = 24 497 550
Thay đổi khoảng cách giữa các thừa số trong mỗi hạng tử ở bài 3 ta có bài toán:
Bài toán 4 : Tính :
 A = 1.3.5 + 3.5.7 + … + 5.7.9 + … + 95.97.99
Giải :
8A = 1.3.5.8 + 3.5.7.8 + 5.7.9.8 + … + 95.97.99.8
 = 1.3.5(7 + 1) + 3.5.7(9 - 1) + 5.7.9(11 - 3) + … + 95.97.99(101 - 93)
 = 1.3.5.7 + 15 + 3.5.7.9 - 1.3.5.7 + 5.7.9.11 - 3.5.7.9 + … 
 + 95.97.99.101 - 93.95.97.99
 = 15 + 95.97.99.101
 = 11 517 600
Trong bài 3 ta nhân A với 4 (bốn lần khoảng cách). Trong bài 4 ta nhân A với 8 (bốn lần khoảng cách). Như vậy để giải bài toán dạng ta nhân với 4k (4 lần khoảng cách) sau đó tách 
 4kn(n + k)(n + 2k) = n(n + k)(n + 2k)(n + 3k) - (n - k)(n + k)n(n + 2k)
Thay đổi sự kế tiếp lặp lại ở các thừa số trong bài toán 1 ta có bài toán:
Bài toán 5 : Tính 
 A = 1.2 + 3.4 + 5.6 + … + 99.100
Giải 
A = 2 + ( 2+ 1).4 + ( 4 + 1)6 + … + (98 + 1).100
 = 3 + 2.4 + 4 + 4.6 + 6 + … + 98.100 + 100
 = (2.4 + 4.6 + … + 98.100 ) + (2 + 4 + 6 + 8 + … + 100)
 = 98.100.102 : 6 + 102.50:2
 = 166600 + 2550 
 = 169150
 Cách khác 
A = 1.(3 - 1) + 3(5 - 1) + 5(7 - 1) + … + 99(101 - 1)
 = 1.3 - 1 + 3.5 - 3 + 5.7 - 5 + … + 99.101 - 99
 = (1.3 + 3.5 + 5.7 + … + 99.101) - (1 + 3 + 5 + 7 + … + 99)
 = 171650 – 2500 
 = 169150
Trong bài toán này ta không nhân A với một số hạng mà tách ngay một thừa số trong tích làm xuất hiện các dãy số mà ta đã biết cách tính hoặc dễ dàng tính được. Làm tương tự với các bài toán:
Bài toán 6 : Tính 
 A = 12 + 22 + 32 + 42 + … + 1002
Giải : 
A = 1 + 2(1 + 1) + 3(2 + 1) + 4(3 + 1) + … + 100(99 + 1)
 = 1 + 1.2 + 2 + 2.3 + 3 + 3.4 + 4 + … + 99.100 + 100
 = (1.2 + 2.3 + 3.4 + … + 99.100) + ( 1 + 2 + 3 + … + 100)
 = 333300 + 5050
 = 338350
Thay đổi khoảng cách giữa các cơ số trong bài 6 ta có bài toán:
Bài toán 7: Tính
 A = 12 + 32 + 52 + … + 992
Giải :
A= 1 + 3(2 + 1) + 5(2 + 3) + 7(2 + 5) + … + 99(2 + 97)
 = 1 + 2.3 + 1.3 + 2.5 + 3.5 + 2.7 + 5.7 + … + 2.99 + 97.99
 = 1 + 2(3 + 5 + 7 + … + 99) + (1.3 + 3.5 + 5.7 + … + 97.99)
 = 1 + 4998 + 161651 
 = 166650
 Trong bài toán 5 và 7 có thể sử dụng : (n - a) ((n + a) = n2 - a2
 n2 = (n - a)(n + a) + a2
a là khoảng cách giữa các cơ số
 Bài toán 8 Tính 
 A = 1.2.3 + 3.4.5 + 5.6.7 + … + 99.99.100
 Giải :
 A = 1.3.( 5 – 3) + 3.5.( 7 – 3) + 5.7.( 9 -3) + … + 99.101.( 103 – 3)
 = ( 1.3.5 + 3.5.7 + … + 5.7.9 + … + 99.101.103 ) 
 – ( 1.3.3 + 3.5.3 + … + 99.101.3 )
 = ( 15 + 99.101.103.105): 8 – 3( 1.3 + 3.5 + 5.7 +… + 99.101) 
 = 13517400 – 3.171650 
 = 13002450
 Thay đổi số mũ của bài toán 7 ta có bài toán:
Bài toán 9 : Tính 
 A = 13 + 23 + 33 + … + 1003
 Giải
 Sử dụng : (n - 1)n(n + 1) = n3 - n
 n3 = n + (n - 1)n(n + 1)
 A = 1 + 2 + 1.2.3 + 3 + 2.3.4 + … + 100 + 99.100.101
 = (1 + 2 + 3 + … + 100) + (1.2.3 + 2.3.4 + … + 99.100.101)
 = 5050 + 101989800 = 101994850
Thay đổi khoảng cách giữa các cơ số ở bài toán 8 ta có bài toán .
Bài toán 10: Tính
 A = 13 + 33 + 53 + … + 993
Giải : Sử dụng (n - 2)n(n + 2) = n3 - 4n
 n3 = (n - 2)n(n + 2) + 4n
 A = 1 + 1.3.5 + 4.3 + 3.5.7 + 4.5 + … + 97.99.101 + 4.99
 = 1 + (1.3.5 + 3.5.7 + … + 97.99.101) + 4(3 + 5 + 7 + … + 99)
 = 1 + 12487503 + 9996 = 12497500
Với khoảng cách là a ta tách : (n - a)n(n + a) = n3 - a2n.
ở bài toán 8, 9 ta có thể làm như bài toán 6, 7.
Thay đổi số mũ của một thừa số trong bài toán 1 ta có:
Bài toán 11: Tính
A = 1.22 + 2.32 + 3.42 + … + 99.1002
Giải :
A = 1.2.(3 - 1) + 2.3(4 - 1) + 3.4(5 - 1) + … + 99.100.(101 - 1)
 = 1.2.3 - 1.2 + 2.3.4 - 2.3 + 3.4.5 - 3.4 + … + 99.100.101 - 99.100
 = (1.2.3 + 2.3.4 + … + 99.100.101) - (1.2 + 2.3 + 3.4 + … + 99.100)
 = 25497450 – 333300
 = 25164150
Với cách khai thác như trên ta có thể khai thác, phát triển các bài toán trên thành rất nhiều bài toán hay mà trong quá trình giải đòi hỏi học sinh phải có sự linh hoạt, sáng tạo.
Trong các bài toán trên ta có thể thay đổi số hạng cuối cùng của dãy bằng số hạng tổng quát theo quy luật của dãy.
*Vận dụng cách giải trên hãy giải các bài toán sau:
 1. Tính A = 1.99 + 2.98 + 3.97 + … + 49.51+ 50.50
 2. Tính B = 1.3 +5.7+9.11+ …+ 97.101 
 3 Tính C = 1.3.5 – 3.5.7 + 5.7.9 – 7.9.11 + … - 97.99.101
4. Tính D = 1.99 + 3.97 + 5.95 + … + 49.51
5. Tính E = 1.33 + 3.53 + 5.73 + … + 49.513
6. Tính F = 1.992 + 2.982 + 3.972 + … + 49.512
một số phương pháp tính tổng
I > Phương pháp dự đoán và quy nạp :
 Trong một số trường hợp khi gặp bài toán tính tổng hữu hạn 
Sn = a1 + a2 + .... an (1) 
Bằng cách nào đó ta biết được kết quả (dự đoán , hoặc bài toán chứng minh khi đã cho biết kết quả). Thì ta nên sử dụng phương pháp này và hầu như thế nào cũng chứng minh được .
 Ví dụ 1 : Tính tổng Sn =1+3+5 +... + (2n -1 )
Thử trực tiếp ta thấy : S1 = 1 
 S2 = 1 + 3 =22 
 S3 = 1+ 3+ 5 = 9 = 32 
 ... ... ...
Ta dự đoán Sn = n2 
 Với n = 1;2;3 ta thấy kết quả đúng 
giả sử với n= k ( k 1) ta có Sk = k 2 (2)
ta cần phải chứng minh Sk + 1 = ( k +1 ) 2 ( 3) 
 Thật vậy cộng 2 vế của ( 2) với 2k +1 ta có 
1+3+5 +... + (2k – 1) + ( 2k +1) = k2 + (2k +1) 
vì k2 + ( 2k +1) = ( k +1) 2 nên ta có (3) tức là Sk+1 = ( k +1) 2 
theo nguyên lý quy nạp bài toán được chứng minh 
 vậy Sn = 1+3=5 + ... + ( 2n -1) = n2 
 Tương tự ta có thể chứng minh các kết quả sau đây bằng phương pháp quy nạp toán học .
1, 1 + 2+3 + .... + n = 
2, 12 + 2 2 + ..... + n 2 = 
3, 13+23 + ..... + n3 = 
4, 15 + 25 + .... + n5 = .n2 (n + 1) 2 ( 2n2 + 2n – 1 ) 
II > Phương pháp khử liên tiếp :
 Giả sử ta cần tính tổng (1) mà ta có thể biểu diễn ai , i = 1,2,3...,n , qua hiệu hai số hạng liên tiếp của 1 dãy số khác , chính xác hơn , giả sử : a1 = b1 - b2 
 	a2 = b2 - b3 
 	.... .... .....
 	an = bn – bn+ 1 
khi đó ta có ngay :
 Sn = ( b1 – b2 ) + ( b2 – b3 ) + ...... + ( bn – bn + 1 ) 
 = b1 – bn + 1 
Ví dụ 2 : tính tổng :
 S = 
Ta có : , , 
Do đó : 
S = 
Dạng tổng quát 
 Sn = ( n > 1 ) 
 = 1- 
Ví dụ 3 : tính tổng 
 Sn = 
Ta có Sn = 
 Sn = 
 Sn = 
Ví dụ 4 : tính tổng 
 Sn = 1! +2.2 ! + 3.3 ! + ...... + n .n! ( n! = 1.2.3 ....n ) 
Ta có : 1! = 2! -1! 
 2.2! = 3 ! -2! 
 3.3! = 4! -3! 
 	 ..... ..... ..... 
 n.n! = (n + 1) –n! 
Vậy Sn = 2! - 1! +3! – 2 ! + 4! - 3! +...... + ( n+1) ! – n! 
 = ( n+1) ! - 1! = ( n+ 1) ! - 1
Ví dụ 5 : tính tổng 
Sn = 
Ta có : i = 1 ; 2 ; 3; ....; n
Do đó Sn = ( 1- 
 = 1- 
III > Phương pháp giải phương trình với ẩn là tổng cần tính: 
Ví dụ 6 : Tính tổng 
 S = 1+2+22 +....... + 2100 ( 4) 
 ta viết lại S như sau :
 S = 1+2 (1+2+22 +....... + 299 )
 S = 1+2 ( 1 +2+22+ ...... + 299 + 2 100 - 2100 ) 
 => S= 1+2 ( S -2 100 ) ( 5) 
Từ (5) suy ra S = 1+ 2S -2101
S = 2101-1
Ví dụ 7 : tính tổng 
 Sn = 1+ p + p 2 + p3 + ..... + pn ( p1) 
Ta viết lại Sn dưới dạng sau : 
Sn = 1+p ( 1+p+p2 +.... + pn-1 )
Sn = 1 + p ( 1+p +p2 +..... + p n-1 + p n –p n ) 
Sn = 1+p ( Sn –pn ) 
Sn = 1 +p.Sn –p n+1 
Sn ( p -1 ) = pn+1 -1 
Sn = 
Ví dụ 8 : Tính tổng 
Sn = 1+ 2p +3p 2 + .... + ( n+1 ) pn , ( p 1) 
Ta có : p.Sn = p + 2p 2 + 3p3 + ..... + ( n+ 1) p n +1 
 = 2p –p +3p 2 –p2 + 4p3–p3 + ...... + (n+1) pn - pn + (n+1)pn –pn + ( n+1) pn+1
= ( 2p + 3p2 +4p3 + ...... +(n+1) pn ) – ( p +p + p + .... pn ) + ( n+1) pn+1
= ( 1+ 2p+ 3p2+4p3+ ....... + ( n+1) pn ) – ( 1 + p+ p2 + .... + p n) + ( n +1 ) pn+1
p.Sn=Sn- ( theo VD 7 )
 Lại có (p-1)Sn = (n+1)pn+1 - 
Sn = 
IV > Phương pháp tính qua các tổng đã biết 
Các kí hiệu : 
Các tính chất : 
 1, 
 2, 
Ví dụ 9 : Tính tổng :
Sn= 1.2 + 2.3 + 3.4 + ......... + n( n+1) 
Ta có : Sn = 
Vì :
 (Theo I )
cho nên : Sn = 
Ví dụ 10 : Tính tổng :
Sn =1.2+2.5+3.8+.......+n(3n-1)
ta có : Sn = 
 = 
Theo (I) ta có :
Sn = 
Ví dụ 11 . Tính tổng 
Sn = 13+ +23 +53 +... + (2n +1 )3 
 ta có : 
Sn = [( 13 +2 3 +33 +43 +....+(2n+1)3 ] –[23+43 +63 +....+(2n)3]
 = [13+23 +33 +43 + ..... + (2n +1 )3] -8 (13 +23 +33 +43 +......+ n3 ) 
Sn = ( theo (I) – 3 )
=( n+1) 2(2n+1) 2 – 2n2 (n+1)2 
= (n +1 )2 (2n2 +4n +1) 
V/ Vận dụng trực tiếp công thức tính tổng các số hạng của dãy số cách đều ( Học sinh lớp 6 ) 
Cơ sở lý thuyết :
 + để đếm số hạng của 1 dãy số mà 2 số hạng liên tiếp của dãy cách nhau cùng 1 số đơn vị , ta dùng công thức: 
 Số số hạng = ( số cuối – số đầu 0 : ( khoảng cách ) + 1 
+ Để tính tổng các số hạng của một dãy số mà 2 số hạng liên tiếp cách nhau cùng 1 số đơn vị , ta dùng công thức:
 Tổng = ( số đầu – số cuối ) .( số số hạng ) :2 
Ví dụ 12 : 
Tính tổng A = 19 +20 +21 +.... + 132 
Số số hạng của A là : ( 132 – 19 ) : 1 +1 = 114 ( số hạng )m
 A = 114 ( 132 +19 ) : 2

File đính kèm:

  • docgiao an boi duong hsg day so quy luat.doc