Bài giảng Đại số 11 tiết 26: Hoán vị – Chỉnh hợp – tổ hợp
Cho tập A = {1; 2; 3; 4; 5; 6; 7; 8; 9}. Hỏi có bao nhiêu
tập con có 4 phần tử của tập A.
Có bao nhiêu cách phân công ba bạn từ một tổ có 10 bạn để làm trực nhật.
PPCT: Tiết 26Bài 2. HOÁN VỊ – - CHỈNH HỢP – TỔ HỢPCHAØO MÖØNG QUYÙ THAÀY COÂĐẾN THAM DỰ TIẾT HỌC HÔM NAYVí dụHãy liệt kê tất cả các tập con có hai phần tử của tập A = {1; 2; 3; 4}Giải:Các tập con có hai phần tử của tập A là:{1;2}{1;3}{1;4}{2;3}{2;4}{3;4}Chú ý: Mỗi tập con gồm hai phần tử của tập có 4 phần tử được gọi là một tổ hợp chập 2 của 4 phần tử.Với n ≥ 1, 1 ≤ k ≤ n, thế nào là một tổ hợp chập k của n phần tử?III. Tổ hợpCho tập A gồm n phần tử (n ≥ 1 ). Mỗi tập con gồm k phần tử (1 ≤ k ≤ n) của A được gọi là một tổ hợp chập k của n phần tử đã cho.Quy ước: tổ hợp chập 0 của n phần tử là tập rỗngIII. Tổ hợp1. Định nghĩa1. Định nghĩaSự khác nhau giữa chỉnh hợp và tổ hợp?TẬP HỢP A (gồm n phần tử)Sắp xếp theo một thứ tự nhất địnhLấy ra k phần tử (1 ≤ k ≤ n) Không quan tâm đến thứ tựChỉnh hợpTổ hợpIII. Tổ hợp1. Định nghĩaĐịnh lí:Ví dụ: Tính:2. Số các tổ hợpGọi là số các tổ hợp chập k của n phần tử (0 ≤ k ≤ n). III. Tổ hợp1. Định nghĩa2. Số các tổhợpa. Tính chất 1b. Tính chất 2 (công thức Pascal) III. Tổ hợp1. Định nghĩa2. Số các tổhợp3. Tính chất3. Tính chất của các số Ví dụ 1Cho tập A = {1; 2; 3; 4; 5; 6; 7; 8; 9}. Hỏi có bao nhiêutập con có 4 phần tử của tập A.GiảiSố các tập con có bốn phần tử của tập A chính là số các tổ hợp chập 4 của 9 phần tử.Vậy, cótập conCó bao nhiêu cách phân công ba bạn từ một tổ có 10bạn để làm trực nhật. GiảiChọn 3 bạn từ 10 bạn trong tổ có cáchIII. Tổ hợp1. Định nghĩa2. Số các tổhợp3. Tính chấtVí dụ 2Ví dụChú ý1. Số tập con có k phần tử của một tập có n phần tử là 2. Chọn k người (k vật) từ n người (n vật) (không sắp xếp) có cách.III. Tổ hợp1. Định nghĩa2. Số các tổhợp3. Tính chấtVí dụChú ýCó bao nhiêu tập con có k phần tử của một tập có n phần tử?Có bao nhiêu cách chọn k người (k vật) từ n người (n vật) (không sắp xếp)?Hoạt động nhómNhóm 1,2: Có bao nhiêu cách chia 10 người thành:Hai nhóm, một nhóm 7 người, nhóm kia 3 người?Ba nhóm tương ứng gồm 5, 3, 2 người. Nhóm 3,4: Cho 12 điểm trong đó không có ba điểmnào thẳng hàng. Hỏi có thể lập được bao nhiêu tamgiác từ 12 điểm trên. III. Tổ hợp1. Định nghĩa2. Số các tổhợp3. Tính chấtVí dụChú ýHđ nhómBài tậpMột tổ gồm 7 nam sinh và 4 nữ sinh. Hỏi có baonhiêu cách chọn 3 học sinh xếp bàn ghế trong đó cóít nhất một nam sinh.III. Tổ hợp1. Định nghĩa2. Số các tổhợp3. Tính chấtVí dụChú ýHđ nhómBài tậpBài tậpMột đội văn nghệ có 15 người gồm 10 nam và 5 nữ. Hỏi có bao nhiêu cách lập một nhóm đồng ca gồm 8người, biết rằng trong nhóm đó phải có ít nhất 3 nữ.III. Tổ hợp1. Định nghĩa2. Số các tổhợp3. Tính chấtVí dụChú ýHđ nhómBài tậpCủng cố1. Nắm được hoán vị và cách sử dụng hoán vị.2. Nắm được chỉnh hợp và cách sử dụng chỉnh hợp.3. Nắm được tổ hợp và cách sử dụng tổ hợp.4. Bài tập 5, 6, 7 SGK.1. Định nghĩa2. Số các tổhợp3. Tính chấtVí dụChú ýHđ nhómBài tậpCủng cốTIẾT HỌC KẾT THÚC !XIN CHÂN THÀNH CẢM ƠN !
File đính kèm:
- Hoan_vi_Chinh_hop_To_hop_tiet_3.ppt