36 đề thi vào lớp 10

Bài 7: Cho tam giác có góc bằng 450. Đường cao chia một cạnh kề với góc đó thành các phần 20cm và 21cm . Tính cạnh lớn trong hai cạnh còn lại .

Bài 8: Cho đường tròn O bán kính OA và đường tròn đường kính OA.

 a. Xác định vị trí tương đối của hai đường tròn .

 b. Dây AD của đường tròn lớn cắt đường tròn nhỏ tại C.Chứng minh nrằng AC = CD .

Bài 9: Cho A,B,C, là ba điểm trên một đường tròn.Atlà tiếp tuyến của đường tròn tại A .đường thẳng song song với At cắt AB tại M và cắt AC tại N.

Chứng minh rằng : AB.AM =AC.AN

 

doc17 trang | Chia sẻ: tuongvi | Lượt xem: 4241 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu 36 đề thi vào lớp 10, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
bao lâu.
Câu 4: (3,0 điểm). Cho đường tròn (O; R) có hai đường kính AB và CD vuông góc với nhau. Trên đoạn thẳng AO lấy điểm M (M khác A và O). Tia CM cắt đường tròn (O; R) tại điểm thứ hai là N. Kẻ tiếp tuyến với đường tròn (O; R) tại N. Tiếp tuyến này cắt đường thẳng vuông góc với AB tại M ở P.
Chứng minh: OMNP là tứ giác nội tiếp.
Chứng minh: CN // OP.
Khi . Tính bán kính của đường tròn ngoại tiếp tam giác OMN theo R.
Câu 5 (1,0 điểm). Cho ba số thoả mãn và . Tìm giá trị nhỏ nhất của biểu thức: A = 
Đề 9
Câu 1 (2,5 điểm)
a) Rút gọn 	b) Giải bất phương trình : 3x-2011<2012
c) Giải hệ phương trình :
Câu 2 (2,0 điểm)
	a) Giải phương trình : 2x2 -5x+2=0
	b) Tìm các giá trị tham số m để phương trình x2 –(2m-3)x+m(m-3)=0 có 2 nghiêm phân biệt x1; x2 thỏa mãn điều kiện 2x1- x2=4
Câu 3 (1,5 điểm) Một người đi xe đạp từ A đến B với vận tốc không đổi.Khi đi từ B đến A người đó tăng vận tốc thêm 2 km/h so với lúc đi ,vì vậy thời gian về ít hơn thời gian đi 30 phút .tính vận tốc lúc đi từ A đến B ,biết quãng đường AB dài 30 km.	
Câu 4 (3,0 điểm) Cho đường tròn (O;R),M nằm ngoài (O) kẻ hai tiếp tuyến MA; MB với (O) ( A;B là tiếp điểm).Kẻ tia Mx nằm giữa MO và MA và cắt (O) tại C ;D.Gọi I là trung điểm CD đường thẳng OI cắt đường thẳng AB tại N;Giải sử H là giao của AB và MO
Chứng minh tứ giác MNIH nội tiếp đường tròn.
Chứng minh rằng tam giác OIH đồng dạng với tam giác OMN , từ đó suy ra OI.ON=R2
Gỉa sử OM=2R ,chứng minh tam giác MAB đều.
Câu 5 (1,0 điểm). Cho x, y là các số thực thỏa mãn điều kiện: 
	Tìm giá trị nhỏ nhất của biểu thức 
Đề 10
Bài 1 (2.0 điểm ) Rút gon các biểu thức sau : 
	A = 	 B = 
Bài 2 (2.5 điểm )
 	1) Giải hệ phương trình 
 	2) Cho phương trình bậc hai : x2 – mx + m – 1 = 0 (1)
 	a) Giải phương trình (1) khi m = 4 .
 	b) Tìm m để phương trình (1) có hai nghiệm x1 ; x2 thỏa mãn 
Bài 3 (1.5 điểm ) Cho hàm số y = x2 
 1) Vẽ đồ thị ( P) của hàm số đó.
 2) Xác định a và b để đường thẳng ( d) : y = ax + b cắt trục tung tại điểm có tung độ bằng - 2 và cắt đồ thị (P) nói trên tại điểm có hoành độ bằng 2.
Bài 4 (4.0 điểm ). Cho nửa đường tròn tâm (O ;R) ,đường kính AB.Gọi C là điểm chính giữa của cung AB.Trên tia đối của tia CB lấy điểm D sao cho CD = CB. OD cắt AC tại M. Từ A , kẻ AH vuông góc với OD ( H thuộc OD). AH cắt DB tại N và cắt nửa đường tròn (O,R) tại E .
1) Chứng minh MCNH là tứ giác nội tiếp và OD song song với EB.
2) Gọi K là giao điểm của EC và OD. Chứng minh ,Suy ra C là trung điểm của KE.
3) Chứng minh tam giác EHK vuông cân và MN // AB.
4) Tính theo R diện tích hình tròn ngoại tiếp tứ giác MCNH
Đề 11
Bài 1. (2,0 điểm) Cho biểu thức: với .
Rút gọn A.	2) Tính giá trị của A khi x = .
Bài 2. (2,0 điểm)Cho hệ phương trình : ( m là tham số ).
Tìm m để hệ phương trình có nghiệm (x ;y) trong đó x = 2.
Tìm m để hệ phương trình có nghiệm duy nhất (x ;y) thoả mãn 2x + y = 9.
Bài 3. (2,0 điểm)Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y=ax + 3 ( a là tham số ) 
1. Vẽ parabol (P).	2. Chứng minh rằng (d) luôn cắt (P) tại hai điểm phân biệt. 
3. Gọi là hoành độ giao điểm của (P) và (d), tìm a để x1 +2x2 = 3
Bài 4. (3,5 điểm)Cho đường tròn O, đường kính AB = 2R. Điểm C năm trên tia đối của tia BA sao cho BC = R. Điểm D thuộc đường tròn tâm O sao cho BD = R. Đường thẳng vuông góc với BC tại C cắt AD tại M.
	1. Chứng minh rằng:
a) Tứ giác BCMD là tứ giác nội tiếp. 	b) AB.AC = AD. AM. 
	c) CD là tiếp tuyến của đường tròn tâm O.
	2. Đường tròn tâm O chia tam giác ABM thành hai phần, tính diện tích phần tam giác ABM nằm ngoài đường tròn tâm O theo R.
Bài 5. (0,5 điểm) Cho a, b, c là các số không âm thoả mãn a + b + c = 1006.
 	Chứng minh rằng: .
Đề 12
Bài 1. (2,0 điểm)
1. Rút gọn các biểu thức sau: 	 a) A = 	b) B = 
2. Biết rằng đồ thị của hàm số y = ax - 4 đi qua điểm M(2;5). Tìm a
Bài 2. (2,0 điểm)
1. Giải các phương trình sau:
 a) 	 b) 
2.Cho phương trình: với x là ẩn số.
 a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi m .
 b) Gọi hai nghiệm của phương trình là x1 , x2 , tính theo m giá trị của E = 
Bài 3 . (2điểm) Giải bài toán sau bằng cách lập hệ phương trình: Nhà Mai có một mảnh vườn trồng rau bắp cải . Vườn được đánh thành nhiều luống mỗi luống cùng trồng một số cây bắp cải . Mai tính rằng : nếu tăng thêm 7 luống rau nhưng mỗi luống trồng ít đi 2 cây thì số cây toàn vườn ít đi 9 cây , nếu giảm đi 5 luống nhưng mỗi luống trồng tăng thêm 2 cây thì số rau toàn vườn sẽ tăng thêm 15 cây . Hỏi vườn nhà Mai trồng bao nhiêu cây bắp cải ?
Bài 4 . (3,0 điểm) Cho đường tròn (O) đường kính AB và một điểm C cố định trên bán kính OA (C khác A và O) , điểm M di động trên đường tròn (M khác A,B) . Qua M kẻ đường thẳng vuông góc với CM , đường thẳng này cắt các tiếp tuyến tại A và B của đường tròn (O) lần lượt tại D và E . 
Chứng minh ACMD và BCME là các tứ giác nội tiếp .
Chứng minh DCEC.
Tìm vị trí của điểm M để diện tích tứ giác ADEB nhỏ nhất .
Câu 5. (1,0 điểm) Tìm các bộ số thực (x, y, z) thoả mãn :
Đề 13
Bài 1 (2,0 điểm) (không được dùng máy tính)
 1- Thực hiện phép tính :	 2- Trục căn thức ở mẫu :
Bài 2 (2,5 điểm)
 1- Giải phương trình : 2x2 – 5x – 3 = 0
 2- Cho hệ phương trình ( m là tham số ) :
 a. Giải hệ phương trình khi m = 1.
 b. Tìm giá trị của m để hệ phương trình có nghiệm duy nhất.
Bài 3 (2,0 điểm ) Trên cùng một mặt phẳng tọa độ, cho parabol (P): y=và đường thẳng (d):
 1. Bằng phép tính, hãy tìm tọa độ giao điểm của (P) và (d) .
 2. Tìm m để đường thẳng (d’) :y= mx – m tiếp xúc với parabol (P)
Bài 4 (3,5 điểm) Cho đường tròn (O;r) và hai đường kính AB,CD vuông góc với nhau.Trên cung nhỏ DB, lấy điểm N ( N khác B và D).Gọi M là giao điểm của CN và AB.
 1- Chứng minh ODNM là tứ giác nội tiếp.
 2- Chứng minh AN.MB =AC.MN.
 3- Cho DN= r .Gọi E là giao điểm của AN và CD.Tính theo r độ dài các đoạn ED, EC .
Đề 14
Câu 1 ( 2 điểm) Cho Phương trình x2 - 2(n-1)x – 3 = 0 ( n tham số)
Giải phương trình khi n = 2.
Gọi x1: x2 là hai nghiệm của phường trình. Tìm n để 
Câu 2 ( 2 điểm) Cho biểu thức với x>0 và 
Thu gọn Q	b) Tìm các giá trị của sao cho và Q có giá trị nguyên.
Câu 3 (1,5điểm) Cho ba đường thẳng (l1), ( l2), (l3)
Tim tọa độ giao điểm B của hai đường thẳng (l1) và ( l2). 
Tìm m để ba đường thẳng (l1), ( l2), (l3) đổng quy.
Câu 4 (1 điểm) cho x,y các số dương và . Chứng minh bất đẳng thức: 
Câu 5 ( 3,5 điểm) Cho đường tròn (O), đường kính MN và dây cung PQ vuông góc với MN Tại I ( khác M, N). trên cung nhỏ NP lấy điểm J (khác N, P). Nối M với J cắt PQ tại H. 
Chứng minh: MJ là phân giác của góc .
Chứng minh: tứ giác HINJ nội tiếp.
Gọi giao điểm của PN với MJ là G; JQ với MN là K. Chứng minh GK// PQ.
Chứng minh G là tâm đường tròn nội tiếp .
Đề 15
Bài 1: Rút gọn biểu thức A =, với a > o,5.
Bài 2: Không dùng máy tính cầm tay,hãy giải phương trình : 29x2 -6x -11 = o
Bài 3 : Không dùng máy tính cầm tay,hãy giải hệ phương trình: 
Bài 4: Cho hàm số bậc nhất y =f(x) = 2011x +2012. Cho x hai giá trị bất kì x1, x2 	sao cho x1 < x2.
Hãy chứng minh f(x1) < f(x2)
Hàm số đồng biến hay nghịch biến trên R ?
Bài 5 : Qua đồ thị của hàm số y = - 0,75x2,hãy cho biết khi x tăng từ -2 đến 4 thì giá trị nhỏ nhất và giá trị lớn nhất của y là bao nhiêu ? 
Bài 6: Hãy sắp xếp các tỷ số lượng giác sau theo thứ tự tăng dần ,giải thích ?
 Cos470, sin 780, Cos140, sin 470, Cos870
Bài 7: Cho tam giác có góc bằng 450. Đường cao chia một cạnh kề với góc đó thành các phần 20cm và 21cm . Tính cạnh lớn trong hai cạnh còn lại .
Bài 8: Cho đường tròn O bán kính OA và đường tròn đường kính OA.
 a. Xác định vị trí tương đối của hai đường tròn .
 b. Dây AD của đường tròn lớn cắt đường tròn nhỏ tại C.Chứng minh nrằng AC = CD .
Bài 9: Cho A,B,C, là ba điểm trên một đường tròn.Atlà tiếp tuyến của đường tròn tại A .đường thẳng song song với At cắt AB tại M và cắt AC tại N.
Chứng minh rằng : AB.AM =AC.AN 
Đề 16
Câu 1 (2 điểm): 
Tính giá tri của các biểu thức: A = ; B = 
Rút gọn biểu thức: P = Với x>0, y>0 và xy.
	Tính giá trị của biểu thức P tại x = 2012 và y = 2011.
Câu 2 ((2điểm): Vẽ trên cùng một hệ trục tọa độ, đồ thị của các hàm số y = x2 và y = 3x – 2. Tính tọa độ các giao điểm của hai đồ thì trên.
Câu 3 (2 điểm): a) Tính độ dài các cạnh của hình chữ nhật, biết chiều dài hơn chiều rộng 1 m và độ dài mỗi đường chéo của hình chữ nhật là 5 m.
b) Tìm m để phương trinh x - 2 + m = 0 có hai nghiệm phân biệt.
Câu 4 (2 điểm) Cho đường tròn (O; R) và điểm A nằm ngoài đường tròn. Vẽ các tiếp tuyến AB, AC với đường tròn (B,C là những tiếp điểm).
Chứng minh ABOC là tứ giác nội tiếp. Nêu cách vẽ các tiếp tuyến AB, AC.
BD là đường kính của đường tròn (O; R). Chứng minh: CD//AO.
Cho AO = 2R, tính bán kính đường tròn nội tiếp tam giác ABC.
Câu 5 (2 điểm) Tìm số tự nhiên n biết: n + S(n) = 2011, trong đó S(n) là tổng các chữ số của n.
Đề 17
Câu 1: (1,5điểm) Cho biểu thức 
Rút gọn biểu thức A.	b) Tìm các giá trị của x sao cho A<0.
Câu 2: (0,75điểm) Giải hệ phương trình sau: 
Câu 3: (1,75điểm). Vẽ đồ thị hàm số (P): . Tìm m để đường thẳng (d): y = x + m tiếp xúc với đồ thị (P).
Câu 4: (3.0điểm). Cho phương trình: (m là tham số)
Giải phương trình (1) khi m = 4.
Chứng tỏ rằng, với mọi giá trị của m phương trình (1) luôn có hai nghiệm phân biệt.
Gọi x1, x2 là hai nghiệm của phương trình (1). Chứng minh rằng biểu thức không phụ thuộc vào m.
Câu 5: (3.0điểm). Cho nửa đường tròn tâm O đường kính AB và điểm M bất kì trên nửa đường tròn đó (M khác A, B). Trên nửa mặt phẳng bờ AB chứa nửa đường tròn kẻ tiếp tuyến Ax. Tia BM cắt Ax tại I; tia phân giác của góc IAM cắt nửa đường tròn tại E và cắt tia BM tại F; BE cắt AM tại K.
Chứng minh rằng: tứ giác EFMK là tứ giác nội tiếp.
Chứng minh tam giác BAF là tam giác cân.
Tia BE cắt tia Ax tại H. Tứ giác AHFK là hình gì ? 
Đề 18
Câu 1: (2,0 điểm)
	1. Tính .
	2. Tìm các giá trị của tham số m để hàm số bậc nhất y = (m - 2)x + 3 đồng biến trên R.
Câu 2: (3,0 điểm)
	1. Rút gọn biểu thức , với a0; a1.
	2. Giải hệ phương trình: .
	3. Cho phương trình: (1), với m là tham số. Tìm các giá trị của m để phươngg trình (1) có hai nghiệm thoả mãn .
Câu 3: (1,5 điểm) Một mảnh vườn hình chữ nhật có diện tích 192 m2. Biết hai lần chiều rộng lớn hơn chiều dài 8m. Tính kích thước của hình chữ nhật đó.
Câu 4: (3 điểm) Cho nửa đường tròn (O), đường kính BC. Gọi D là điểm cố định thuộc đoạn thẳng OC (D khác O và C). Dựng đường thẳng d vuông góc với BC tại điểm D, cắt nửa đường tròn (O) tại điểm A. Trên cung AC lấy điểm M bất kỳ (M khác A và C), tia BM cắt đường thẳng d tại điểm K, tia CM cắt đường thẳng d tại điểm E. Đường thẳng BE cắt nửa đường tròn (O) tại điểm N (N khác B).
	1. Chứng minh tứ giác CDNE nội tiếp.
	2.Chứng minh ba điểm C, K và N thẳng hàng.
	3. Gọi I là tâm đường tròn ngoại tiếp tam giác BKE. Chứng minh rằng điểm I luôn nằm trên một đường thẳng cố định khi điểm M thay đổi.
Câu 5: (0,5 điểm) Cho hai số thực dương x, y thoả mãn: .
	Tìm giá trị nhỏ nhất của biểu thức M = x + y.
Đề 19
Bài 1:( 2 điểm) Cho hàm số y = -x – 2 có đồ thị là đường thẳng (d )
1/ Trong mặt phẳng tọa độ Oxy hãy vẽ đường thẳng ( d )
2/ Hàm số y = 2mx + n có đồ thị là đường thẳng ( d’ ). Tìm m và n đề hai đường thẳng (d) và ( d’ ) song song với nhau.
Bài 2 : (2 điểm) Giải phương trình và hệ phương trình sau:
1/ 3x2 + 4x + 1 = 0 	2/ 
Bài 3 : (2 điểm) Rút gọn các biểu thức sau:
1/ A = 	2/ B = 
Bài 4 : (4 điểm) Cho đường tròn (O; R) và điểm A sao cho OA = 2R. Từ A vẽ hai tiếp tuyến AB, AC đến (O) ( với B,C là các tiếp điểm).
 	1/ Tính góc AOB.
 	2/ Từ A vẽ các tuyến APQ đến đường tròn (O) ( Cát tuyến APQ không đi qua tâm O . Gọi H là trung điểm của PQ ; BC cắt PQ tại K . 
a/ Chứng minh 4 điểm O, H , B, A cùng thuộc một đường tròn.
b/ Chứng minh AP. AQ = 3R2.
c/ Cho OH = , tính độ dài đoạn thẳng HK theo R
Đề 20
Bài 1: (2,0 điểm)Cho đường thẳng (d): y = -x + 2 và parabol (P): y = x2
Vẽ (d) và (P) trên cùng một hệ trục tọa độ.
Bằng đồ thị hãy xác định tọa độ các giao điểm của (d) và (P).
Bài 2: (2,0 điểm)
Giải phương trình: 3x2 – 4x – 2 = 0.
Giải hệ phương trình: 
Bài 3: (2,0 điểm)Cho biểu thức: P = , với x 0
Rút gọn biểu thức P.
Tìm các giá trị nguyên dương của x để biểu thức Q = nhận giá trị nguyên.
Bài 4: (3,0 điểm)Cho tam giác ABC có góc BAC = 600, đường phân giác trong của góc ABC là BD và đường phân giác trong của góc ACB là CE cắt nhau tại I (D AC và E AB)
Chứng minh tứ giác AEID nội tiếp được trong một đường tròn.
Chứng minh rằng: ID = IE.
Chứng minh rằng: BA.BE = BD. BI
Bài 5: (1,0 điểm)Cho hình vuông ABCD. Qua điểm A vẽ một đường thẳng cắt cạnh BC tại E và cắt đường thẳng CD tại F. Chứng minh rằng: 
Đề 21
Bài I (2,5 điểm)Cho Với .
1) Rút gọn biểu thức A.	2) Tính giá trị của A khi x = 9.
3) Tìm x để .
Bài II (2,5 điểm)Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một đội xe theo kế hoạch chở hết 140 tấn hàng trong một số ngày quy định. Do mỗi ngày đội đó chở vượt mức 5 tấn nên đội đã hoàn thành kế hoạch sớm hơn thời gian quy định 1 ngày và chở thêm được 10 tấn. Hỏi theo kế hoạch đội xe chở hàng hết bao nhiêu ngày?
Bài III (1,0 điểm) Cho Parabol (P): và đường thẳng (d): .
1) Tìm toạ độ các giao điểm của Parabol (P) và đường thẳng (d) khi m = 1.
2) Tìm m để đường thẳng (d) cắt Parabol (P) tại hai điểm nằm về hai phía của trục tung.
Bài IV (3,5 điểm)Cho đường tròn tâm O, đường kính AB = 2R. Gọi d1 và d2 là hai tiếp tuyến của đường tròn (O) tại hai điểm A và B.Gọi I là trung điểm của OA và E là điểm thuộc đường tròn (O) (E không trùng với A và B). Đường thẳng d đi qua điểm E và vuông góc với EI cắt hai đường thẳng d1 và d2 lần lượt tại M, N.
1) Chứng minh AMEI là tứ giác nội tiếp.
2) Chứng minh và .
3) Chứng minh AM.BN = AI.BI .
4) Gọi F là điểm chính giữa của cung AB không chứa E của đường tròn (O). Hãy tính diện tích của tam giác MIN theo R khi ba điểm E, I, F thẳng hàng.
Bài V (0,5 điểm) Với x > 0, tìm giá trị nhỏ nhất của biểu thức: .
Đề 22
Bài 1: (1,5đ): a) Rút gọn biểu thức: P = 
b) Tìm toạ độ giao điểm của hai đồ thị hàm số và 
Bài 2: (1đ): Một công ty vận tải điều một số xe tải đến kho hàng để chở 21 tấn hàng. Khi đến kho hàng thì có 1 xe bị hỏng nên để chở hết lượng hàng đó, mỗi xe phải chở thêm 0,5 tấn so với dự định ban đầu. Hỏi lúc đầu công ty đã điều đến kho hàng bao nhiêu xe. Biết rằng khối lượng hàng chở ở mỗi xe là như nhau.
Bài 3: (1,5đ): Cho hệ phương trình: 
	a) Giải hệ phương trình với m = 2
	b) Tìm để hệ phương trình có nghiệm duy nhất sao cho 
Bài 4: (3đ) Cho đường tròn tâm O bán kính R và một đường thẳng (d) cố định, (d) và đường tròn (O; R) không giao nhau. Gọi H là chân đường vuông góc kẻ từ O đến đường thẳng (d), M là một điểm thay đổi trên (d) (M không trùng với H). Từ M kẻ hai tiếp tuyến MA và MB với đường tròn (A, B là các tiếp điểm). Dây cung AB cắt OH tại I.
a) Chứng minh 5 điểm O, A, B, H, M cùng nằm trên một đường tròn.
b) Chứng minh IH.IO = IA.IB
c) Chứng minh khi M thay đổi trên (d) thì tích IA.IB không đổi.
Bài 5: (1đ): Tìm giá trị lớn nhất của biểu thức với – 1 < x < 1.
Đề 23
Câu 1. (2.0 điểm) Giải hệ phương trình 
Câu 2. (1.5 điểm) Cho phương trình x2 – 2mx + m2 – 1 =0 (x là ẩn, m là tham số).
Giải phương trình với m = - 1
Tìm tất cả các giá trị của m đê phương trình (1) có hai nghiệm phân biệt
Tìm tât cả các giá trị của m để phương trình (1) có hai nghiệm x1 , x2 sao cho tổng P = x12 + x22 đạt 
giá trị nhỏ nhất.
Câu 3. (1.5 điểm) Một hình chữ nhật ban đầu có cho vi bằng 2010 cm. Biết rằng nều tăng chiều dài của hình chữ nhật thêm 20 cm và tăng chiều rộng thêm 10 cm thì diện tích hình chữ nhật ban đầu tăng lên 13 300 cm2. Tính chiều dài, chiều rộng của hình chữ nhật ban đầu.
Câu 4. (2.0 điểm) Cho tam giác ABC có ba góc nhọn, không là tam giác cân, AB < AC và nội tiếp đường tròn tâm O, đường kính BE. Các đường cao AD và BK của tam giác ABC cắt nhau tại điểm H. Đường thẳng BK cắt đường tròn (O) tại điểm thứ hai là F. Gọi I là trung điểm của cạnh AC. Chứng minh rằng: 
Tứ giác AFEC là hình thang cân.
BH = 2OI và điểm H đối xứng với F qua đường thẳng AC.
Câu 5.(2.0 điểm) Cho a, b, c là ba số thực dương thỏa mãn điều kiện a + b + c = 1. Tìm giá trị lớn nhất của biểu thức: P = .
Đề 24
Bài 1: (2,0điểm) 
 a/ Giải phương trình (2x + 1)(3 – x) + 4 = 0
 b/ Giải hệ phương trình 3x - = 1
 5x + 3y = 11
Bài 2: (1 đ) Rút gọn biểu thức Q = 	
Bài 3: (2đ) Cho phương trình x2 – 2x – 2m2 = 0 ( m là tham số )
 a/ Giải phương trình khi m = 0
 b/ Tìm m để phương trình có hai nghiệm x1;x2 khác 0 và thỏa điều kiện x12 =4x22
Bài 4: (1,5đ) Một hình chữ nhật có chu vi bằng 28 cm và mỗi đường chéo của nó có độ dài 10cm . Tìm độ dài các cạnh của hình chữ nhật đó.
Bài 5: (3,5đ) Cho tam giác đều ABC nội tiếp đường tròn đường kính AD . Gọi M là một điểm di động trên cung nhỏ AB ( M không trùng với các điểm A và B)
 a/ Chứng minh rằng MD là đường phân giác của góc BMC
 b/ Cho AD = 2R . Tính diện tích tứ giác ABDC theo R
 c/ Gọi K là giao điểm của AB và MD , H là giao điểm của AD và MC
 Chứng minh rằng ba đường thẳng AM,BD,HK đồng quy.
Đề 25
Bài 1: (2 điểm) Giải các phương trình và hệ phương trình sau:
a) 	b) 	
c) 	d) 
Bài 2: (1,5 điểm)
	a) Vẽ đồ thị (P) của hàm số và đường thẳng (D): trên cùng một hệ trục toạ độ.
	b) Tìm toạ độ các giao điểm của (P) và (D) ở câu trên bằng phép tính.
Bài 3: (1,5 điểm) Thu gọn các biểu thức sau:
Bài 4: (1,5 điểm) Cho phương trình (x là ẩn số)
Chứng minh rằng phương trình luôn luôn có nghiệm với mọi m.
Gọi x1, x2 là các nghiệm của phương trình. Tìm m để biểu thức A = đạt giá trị nhỏ nhất
Bài 5: (3,5 điểm) Cho đường tròn (O) có tâm O, đường kính BC. Lấy một điểm A trên đường tròn (O) sao cho AB > AC. Từ A, vẽ AH vuông góc với BC (H thuộc BC). Từ H, vẽ HE vuông góc với AB và HF vuông góc với AC (E thuộc AB, F thuộc AC). 
Chứng minh rằng AEHF là hình chữ nhật và OA vuông góc với EF.
Đường thẳng EF cắt đường tròn (O) tại P và Q (E nằm giữa P và F).
Chứng minh AP2 = AE.AB. Suy ra APH 
Gọi I là giao điểm của KF và BC. Chứng minh IH2 = IC.ID là tam giác cân
Gọi D là giao điểm của PQ và BC; K là giao điểm cùa AD và đường tròn (O) (K khác A). Chứng minh AEFK là một tứ giác nội tiếp.
Đề 26
Câu 1: (3,0 điểm) Cho biểu thức A = 
a) Nêu điều kiện xác định và rút biểu thức A	b) Tim giá trị của x để A = .
c) Tìm giá trị lớn nhất cua biểu thức P = A - 9
Câu 2: (2,0 điểm) Cho phương trình bậc hai x2 – 2(m + 2)x + m2 + 7 = 0 (1) (m là tham số)
Giải phương trình (1) khi m = 1.
Tìm m để phương trình (1) có nghiệm x1, x2 thỏa mãn x1x2 – 2(x1 + x2) = 4
Câu 3: (1,5 điểm) Quãng đường AB dài 120 km. Hi xe máy khởi hành cùng một lúc đi từ A đến B. Vận tốc của xe máy thứ nhất lớn hơn vận tốc của xe máy thứ hai là 10 km/h nên xe máy thứ nhất đến B trước xe máy thứ hai 1 giờ. Tính vận tóc của mỗi xe ?
Câu 4: (3,5 điểm) Cho điểm A nằm ngoài đường tròn (O). Từ A kẻ hai tiếp tuyến AB, AC và cát tuyến ADE tới đường tròn (B, C là hai tiếp điểm; D nằm giữa A và E). Gọi H là giao điểm của AO và BC.
Chứng minh rằng ABOC là tứ giác nội tiếp
Chứng minh rằng AH.AO = AD.AE
Tiếp tuyến tại D của đường tròn (O) cắt AB, AC theo thứ tự tại I và K. Qua điểm O kẻ đường thẳng vuông góc với OA cắt tia AB tại P và cắt tia AC tại Q. Chứng minh rằng IP + KQ PQ.
Đề 27
Bài 1( 2 điểm) a) Đơn giản biểu thức: A 
 	b) Cho biểu thức: Rút gọn P và chứng tỏ P 0
Bài 2( 2 điểm) 1) Cho phương trình bậc hai x2 + 5x + 3 = 0 có hai nghiệm x1; x2. Hãy lập một phương trình bậc hai có hai nghiệm (x12 + 1 ) và ( x22 + 1).
2) Giải hệ phương trình 
Bài 3( 2 điểm) Quãng đường từ A đến B dài 50km.Một người dự định đi xe đạp từ A đến B với vận tốc không đổi.Khi đi được 2 giờ,người ấy dừng lại 30 phút để nghỉ.Muốn đến B đúng thời gian đã định,người đó phải tăng vận tốc thêm 2 km/h trên quãng đường còn lại.Tính vận tốc ban đầu của người đi xe đạp.
Bài 4( 4 điểm) Cho tam giác ABC có ba góc nhọn và H là trực tâm.Vẽ hình bình hành BHCD.Đường thẳng đi qua D và song song BC cắt đường thẳng AH tại E.
Chứng minh A,B,C,D,E cùng thuộc mộ

File đính kèm:

  • doc36 de thi vao 10.doc
Giáo án liên quan