19 Phương pháp chứng minh Bất đẳng thức

Kiến thức: Nếu a;b;clà số đo ba cạnh của tam giác thì : a;b;c> 0

Và |b-c| < a < b+c ; |a-c| < b < a+c ; |a-b| < c < b+a

Ví dụ 1: Cho a;b;c là số đo ba cạnh của tam giác chứng minh rằng

1/ a2+b2+c2< 2(ab+bc+ac)

2/ abc>(a+b-c).(b+c-a).(c+a-b)

Giải

1/Vì a,b,c là số đo 3 cạnh của một tam giác nên ta có

 

 Cộng từng vế các bất đẳng thức trên ta có: a2+b2+c2< 2(ab+bc+ac)

2/ Ta có a > b-c   > 0

 b > a-c   > 0

 c > a-b  

 

doc31 trang | Chia sẻ: anhquan78 | Lượt xem: 819 | Lượt tải: 1download
Bạn đang xem trước 20 trang mẫu tài liệu 19 Phương pháp chứng minh Bất đẳng thức, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
 2: Chứng minh rằng: 
Giải: 
 	 a2b2(a2-b2)(a6-b6) 0
a2b2(a2-b2)2(a4+ a2b2+b4) 0
Bất đẳng thứccuối đúng vậy ta có điều phải chứng minh 
Ví dụ 3: cho x.y =1 và xy Chứng minh 
Giải: vì :xy nên x- y 0 x2+y2 ( x-y)
 	 x2+y2- x+y 0 x2+y2+2- x+y -2 0
 x2+y2+()2- x+y -2xy 0 vì x.y=1 nên 2.x.y=2
(x-y-)2 0 Điều này luôn luôn đúng . Vậy ta có điều phải chứng minh
Ví dụ 4: Chứng minh rằng:
 a/ P(x,y)= 
 b/ (gợi ý :bình phương 2 vế) 
 c/ Cho ba số thực khác không x, y, z thỏa mãn:
Chứng minh rằng :có đúng một trong ba số x,y,z lớn hơn 1
 Giải: Xét (x-1)(y-1)(z-1)=xyz+(xy+yz+zx)+x+y+z-1
 =(xyz-1)+(x+y+z)-xyz()=x+y+z - ( (vì< x+y+z theo gt)
 2 trong 3 số x-1 , y-1 , z-1 âm hoặc cả ba sỗ-1 , y-1, z-1 là dương.
Nếu trường hợp sau xảy ra thì x, y, z >1 x.y.z>1 Mâu thuẫn gt x.y.z=1 bắt buộc phải xảy ra trường hợp trên tức là có đúng 1 trong ba số x ,y ,z là số lớn hơn 1
Ví dụ 5: Chứng minh rằng : 
Giải:
Ta có : 
Tương tự ta có :,	
Cộng vế theo vế các bất đẳng thức (1), (2), (3), ta được :
 (*)
Ta có : 
Tương tự : ,	 
Cộng vế theo vế các bất đẳng thức (4), (5), (6), ta được :
 (**)
Từ (*) và (**) , ta được : (đpcm)
Phương pháp 3: Dùng bất đẳng thức phụ
Kiến thức:
 	a) 
 	b) dấu( = ) khi x = y = 0
 	c) 
 	d)
	Ví dụ 1 Cho a, b ,c là các số không âm chứng minh rằng 
 (a+b)(b+c)(c+a)8abc
Giải: Dùng bất đẳng thức phụ: 
Tacó ; ; 
(a+b)(b+c)(c+a)8abc 
 Dấu “=” xảy ra khi a = b = c
 	Phương pháp 4:	Bất đẳng thức Cô sy 
Kiến thức: 
a/ Với hai số không âm : , ta có: . Dấu “=” xảy ra khi a=b
b/ Bất đẳng thức mở rộng cho n số không âm :
Dấu “=” xảy ra khi 
Chú ý : ta dùng bất đẳng thức Côsi khi đề cho biến số không âm.
Ví dụ 1 : Giải phương trình :
Giải : Nếu đặt t =2x thì pt trở thành pt bậc 6 theo t nên ta đặt 
Khi đó phương trình có dạng :
Vế trái của phương trình:
Vậy phương trình tương đương với : 
.
Ví dụ 2 : Cho x, y , z > 0 và x + y + z = 1. Tìm GTLN của P =
Giải : P = 3- () = 3 – Q. Theo BDT Côsi , nếu a, b, c > 0 thì 
Suy ra Q = -Q nên P = 3 – Q 3-=
Vậy max P = .khi x = y = z = .
Ví dụ 3: Cho a, b, c >0 . Chứng minh rằng: 
Giải: Áp dụng bất đẳng thức Côsi ta có :
Tương tự :
Dấu “=” xảy ra khi a = b = c.
Ví dụ 4 : CMR trong tam giác ABC : (*)
Giải : Theo bất đẳng thức Côsi :
Cũng theo bất đẳng thức Côsi :
Viết tiếp hai BDT tương tự (2) rồi nhân với nhau sẽ được 
Từ (1),(3) suy ra (*). Dấu “=” xảy ra khi a = b = c hay ABC là đều .
Ví dụ 5:
Cho . Chứng minh rằng: 
Giải: Đặt có 2 nghiệm a,c
Mà:
Theo bất đẳng thức Cauchy ta có:
 	Phương pháp 5	 Bất đẳng thức Bunhiacopski
Kiến thức:
Cho 2n số thực (): . Ta luôn có:
Dấu “=” xảy ra khi 
Hay (Quy ước : nếu mẫu = 0 thì tử = 0 )
Chứng minh:
Đặt 
Nếu a = 0 hay b = 0: Bất đẳng thức luôn đúng.
Nếu a,b > 0:
Đặt: , Thế thì: 
Mặt khác: 
Suy ra: 
Lại có: 
Suy ra: 
Dấu”=” xảy ra 
Ví dụ 1 :
Chứng minh rằng: , ta có: 
Giải: Ta có: 
Theo bất đẳng thức Bunhiacopski, ta có:
Sử dụng bất đẳng thức Bunhiacopski một lần nữa:
Ví dụ 2: Cho tam giác ABC có các góc A,B,C nhọn. Tìm GTLN của:
Giải:
* Bất đẳng thức Bunhiacopski mở rộng
Cho m bộ số, mỗi bộ số gồm n số không âm: 
Thế thì: 
Dấu”=” xảy ra bô số (a,b,.,c) sao cho: với mỗi i = 1,2,,m thì sao cho: , Hay 
Ví dụ 1: Cho 
Chứng minh rằng: 
Giải: 
 ta có: 
Do đó theo bất đẳng thức Bunhiacopski:
(đpcm)
Ví dụ 2: Cho 4 số a,b,c,d bất kỳ chứng minh rằng:
 Giải: Dùng bất đẳng thức Bunhiacopski: Tacó ac+bd
mà 
Ví dụ 3: Chứng minh rằng : 
	Giải: Dùng bất đẳng thức Bunhiacopski
 	Cách 1: Xét cặp số (1,1,1) và (a,b,c) ta có 
 3
 	 Điều phải chứng minh Dấu bằng xảy ra khi a=b=c
Phương pháp 6:	 Bất đẳng thức Trê- bư-sép
Kiến thức:
a)Nếu thì .
Dấu ‘=’ xảy ra khi và chỉ khi
b)Nếu thì
Dấu ‘=’ xảy ra khi và chỉ khi
Ví dụ 1: Cho ABC có 3 góc nhọn nội tiếp đường tròn bán kính R = 1 và 
S là diện tích tan giác. chứng minh rằng ABC là tam giác đều.
Giải: Không giảm tính tổng quát ta giả sư Suy ra:
Áp dụng BĐT trebusep ta được:
Dấu ‘=’ xảy ra
Mặt khác:
Thay (2) vào (1) ta có
Dấu ‘=’ xảy ra ABC đều.
 	Ví dụ 2(HS tự giải): 
a/	Cho a,b,c>0 và a+b+c=1 CMR: 
b/	Cho x,y,z>0 và x+y+z=1 CMR:x+2y+z 
c/	Cho a>0 , b>0, c>0 CMR: 
 d)Cho x,y thỏa mãn ;CMR: x+y	 
Ví dụ 3: Cho a>b>c>0 và . Chứng minh rằng
Giải: 
Do a,b,c đối xứng ,giả sử abc 
Áp dụng BĐT Trê- bư-sép ta có
 ==
Vậy Dấu bằng xảy ra khi a=b=c=
Ví dụ 4: Cho a,b,c,d>0 và abcd =1 .Chứng minh rằng :
Giải: Ta có 
Do abcd =1 nên cd = (dùng )
Ta có (1)	 
Mặt khác: = (ab+cd)+(ac+bd)+(bc+ad)
 =
Vậy
Phương pháp7	 Bất đẳng thức Bernouli
Kiến thức:
	a)Dạng nguyên thủy: Cho a-1, Z thì . Dấu ‘=’ xảy ra khi và chỉ khi 
b) Dạng mở rộng:
 	- Cho a > -1, thì . Dấu bằng xảy ra khi và chỉ khi a = 0.
- cho thì . Dấu bằng xảy ra khi va chỉ khi.
	Ví dụ 1 : Chứng minh rằng .
Giải
Nếu hay thì BĐT luôn đúng
Nếu 0 < a,b < 1
Áp dụng BĐT Bernouli:
Chứng minh tương tự:. Suy ra (đpcm).
Ví dụ 2: Cho a,b,c > 0.Chứng minh rằng 
. (1)
Giải
Áp dụng BĐT Bernouli:
 (2)
Chứng minh tương tự ta đuợc:
 (3)
 (4)
Cộng (2) (3) (4) vế theo vế ta có
(đpcm)
Chú ý: ta có bài toán tổng quát sau đây:
“Cho Chứng minh rằng 
 .
Dấu ‘=’ .(chứng minh tương tự bài trên).
Ví dụ 3: Cho . Chứng minh rằng 
.
Giải
Đặt .
Chứng minh tương tự:
Cộng (1) (2) (3) vế theo vế ta được
Chú ý: Bài toán tổng quát dạng này
“ Cho n số 
Ta luôn có:
Phương pháp 8: Sử dụng tính chất bắc cầu
Kiến thức: A>B và B>C thì A>C
Ví dụ 1: Cho a, b, c ,d >0 thỏa mãn a> c+d , b>c+d
 Chứng minh rằng ab >ad+bc
 	Giải:
Tacó 	 (a-c)(b-d) > cd
 ab-ad-bc+cd >cd ab> ad+bc (điều phải chứng minh)
Ví dụ 2: Cho a,b,c>0 thỏa mãn . Chứng minh 
 	Giải: Ta có :( a+b- c)2= a2+b2+c2+2( ab –ac – bc) 0 
 	 ac+bc-ab ( a2+b2+c2)
 	 ac+bc-ab 1 Chia hai vế cho abc > 0 ta có 
Ví dụ 3: Cho 0 1-a-b-c-d	Giải: Ta có (1-a).(1-b) = 1-a-b+ab
 	Do a>0 , b>0 nên ab>0 (1-a).(1-b) > 1-a-b (1)
 	Do c 0 ta có (1-a).(1-b) ( 1-c) > 1-a-b-c
 	 (1-a).(1-b) ( 1-c).(1-d) > (1-a-b-c) (1-d) =1-a-b-c-d+ad+bd+cd
 	 (1-a).(1-b) ( 1-c).(1-d) > 1-a-b-c-d (Điều phải chứng minh)
Ví dụ 4: Cho 0 <a,b,c <1 . Chứng minh rằng: 
 	Giải: 
 	Do a < 1 và 
 	Ta có 1-b-+b > 0 1+ > + b
mà 0 , > 
Từ (1) và (2) 1+> +. Vậy + < 1+
 	Tương tự 	+; +£ 
 	Cộng các bất đẳng thức ta có :
Ví dụ 5 Chứng minh rằng : Nếu thì çac+bd ê=1998
Giải:
Ta có (ac + bd) + (ad – bc ) = ac + b-=
= a2(c2+d2)+b2(c2+d2) =(c2+d2).( a2+ b2) = 19982
 	rõ ràng (ac+bd)2 
Ví dụ 6 (HS tự giải) : 
a/ Cho các số thực : a1; a2;a3 .;a2003 thỏa mãn : a1+ a2+a3 + .+a2003 =1
c hứng minh rằng : a+ 
b/ Cho a;b;c thỏa mãn :a+b+c=1
Chứng minh rằng: (
Phương pháp 9: Dùng tính chất của tỷ số
Kiến thức
 	1) Cho a, b ,c là các số dương thì
 a – Nếu thì 
 b – Nếu thì 
 	2) Nếu b,d >0 thì từ 
`
 	Ví dụ 1: Cho a,b,c,d > 0 .Chứng minh rằng 
 	Giải: Theo tính chất của tỉ lệ thức ta có
 (1)
 	Mặt khác : (2)
 	Từ (1) và (2) ta có \
	 < < (3)
 	Tương tự ta có 
 	 (4)
 (5)
 (6)
cộng vế với vế của (3); (4); (5); (6) ta có 
 điều phải chứng minh
Ví dụ 2 :Cho: 0 .Chứng minh rằng <
Giải: Từ < 
Vậy < điều phải chứng minh
Ví dụ 3 : Cho a;b;c;dlà các số nguyên dương thỏa mãn : a+b = c+d =1000
tìm giá trị lớn nhất của
Giải: Không mất tính tổng quát ta giả sử : Từ : 
 vì a+b = c+d 
a/ Nếu :b thì 999
b/Nếu: b=998 thì a=1 =Đạt giá trị lớn nhất khi d= 1; c=999
Vậy giá trị lớn nhất của =999+khi a=d=1; c=b=999
Phương pháp 10: Phương pháp làm trội
Kiến thức: 
 	Dùng các tính bất đẳng thức để đưa một vế của bất đẳng thức về dạng tính được tổng hữu hạn hoặc tích hữu hạn.
 	(*) Phương pháp chung để tính tổng hữu hạn : S = 
 	Ta cố gắng biến đổi số hạng tổng quát u về hiệu của hai số hạng liên tiếp nhau:
 	Khi đó :S = 
 	(*) Phương pháp chung về tính tích hữu hạn: P = 
 	Biến đổi các số hạng về thương của hai số hạng liên tiếp nhau: = 
 	Khi đó P = 
Ví dụ 1: Với mọi số tự nhiên n >1 chứng minh rằng 
 	Giải: Ta có với k = 1,2,3,,n-1
 Do đó: 
 	Ví dụ 2: Chứng minh rằng:
 Với n là số nguyên
Giải: Ta có 
Khi cho k chạy từ 1 đến n ta có
1 > 2
Cộng từng vế các bất đẳng thức trên ta có 
Ví dụ 3: Chứng minh rằng 
 	Giải: Ta có 
 	Cho k chạy từ 2 đến n ta có
 Vậy 
Phương pháp 11: Dùng bất đẳng thức trong tam giác
Kiến thức: Nếu a;b;clà số đo ba cạnh của tam giác thì : a;b;c> 0 
Và |b-c| < a < b+c ; |a-c| < b < a+c ; |a-b| < c < b+a 
Ví dụ 1: Cho a;b;c là số đo ba cạnh của tam giác chứng minh rằng 
1/ a2+b2+c2< 2(ab+bc+ac)
2/ abc>(a+b-c).(b+c-a).(c+a-b)
Giải
1/Vì a,b,c là số đo 3 cạnh của một tam giác nên ta có
 Þ 
 	Cộng từng vế các bất đẳng thức trên ta có: a2+b2+c2< 2(ab+bc+ac)
2/ Ta có a > êb-c ï Þ > 0
 b > êa-c ï	Þ > 0
 c > êa-b ï	Þ 
 	Nhân vế các bất đẳng thức ta được
Ví dụ2 (HS tự giải)
 	1/ Cho a,b,c là chiều dài ba cạnh của tam giác
 	Chứng minh rằng 
 	2/Cho a,b,c là chiều dài ba cạnh của tam giác có chu vi bằng 2
 	Chứng minh rằng 
Phương pháp 12: 	Sử dụng hình học và tọa độ 
Ví dụ 1:
Chứng minh rằng : và 
Giải
Trong mặt phẳng Oxy, chọn ; 
Thì , ; 
Hơn nữa: (ĐPCM)
Ví dụ 2:
Cho 2n số: thỏa mãn: Chứng minh rằng: 
y
Giải:
Vẽ hình
MN
H
MK
M1
x
O
x + y = 1
	Trong mặt phẳng tọa độ, xét: 
 : ;;
Giả thiết suy ra đường thẳng x + y = 1. Lúc đó:
, , ,, 
Và 
(ĐPCM)
Phương pháp 13: Đổi biến số
Ví dụ1: Cho a,b,c > 0 Chứng minh rằng (1)
Giải: Đặt x=b+c ; y=c+a ;z= a+b ta có a= ; b = ; c =
ta có (1) 
 ( 
 	Bất đẳng thức cuối cùng đúng vì ( ; nên ta có điều phải chứng minh
 	Ví dụ2: 
 	Cho a,b,c > 0 và a+b+c <1. Chứng minh rằng 
 (1)
Giải: Đặt x = ; y = ; z = . Ta có 
 	(1) Với x+y+z 0
 	Theo bất đẳng thức Côsi ta có: 3., và: 3.
 . Mà x+y+z < 1. 	Vậy (đpcm)
Ví dụ3: Cho x , y thỏa mãn CMR 
Gợi ý: Đặt , 2u-v =1 và S = x+y =v = 2u-1 
thay vào tính S min
Bài tập tự giải
 1) Cho a > 0 , b > 0 , c > 0 CMR:
 2)Tổng quát m, n, p, q, a, b >0 
 CMR
Phương pháp 14: Dùng tam thức bậc hai
Kiến thứ: Cho f(x) = ax2 + bx + c
Định lí 1:
 f(x) > 0,
Định lí 2:
Phương trình f(x) = 0 có 2 nghiệm 
Phương trình f(x) = 0 có 2 nghiệm :
Phương trình f(x) = 0 có 2 nghiệm : 
Phương trình f(x) = 0 có 2 nghiệm 
Ví dụ 1:Chứng minh rằng (1)
 	Giải:	Ta có (1) 
Vậy với mọi x, y
Ví dụ2:	Chứng minh rằng: 
Giải: Bất đẳng thức cần chứng minh tương đương với
 	Ta có 
 	Vì a = vậy (đpcm)
 	Phương pháp 15: 	Dùng quy nạp toán học
Kiến thức:
 	Để chứng minh bất đẳng thức đúng với ta thực hiện các bước sau :
 	1 – Kiểm tra bất đẳng thức đúng với 
 	2 - Giả sử BĐT đúng với n =k (thay n =k vào BĐT cần chứng minh được gọi là giả thiết quy nạp )
 	3- Ta chứng minh bất đẳng thức đúng với n = k +1 (thay n = k+1vào BĐT cần chứng minh rồi biến đổi để dùng giả thiết quy nạp)
 	4 – kết luận BĐT đúng với mọi 
Ví dụ1: Chứng minh rằng : (1)
 	Giải: Với n =2 ta có (đúng). Vậy BĐT (1) đúng với n =2
 	Giả sử BĐT (1) đúng với n =k ta phải chứng minh BĐT (1) đúng với n = k+1
 	Thật vậy khi n =k+1 thì (1) 
 	Theo giả thiết quy nạp 
 	k2+2k<k2+2k+1 Điều này đúng .Vậy bất đẳng thức (1)được chứng minh
Ví dụ2: Cho và a+b> 0. Chứng minh rằng (1)
Giải: Ta thấy BĐT (1) đúng với n=1
Giả sử BĐT (1) đúng với n=k ta phải chứng minh BĐT đúng với n=k+1
Thật vậy với n = k+1 ta có 
 (1) 
 (2)
 Vế trái (2) 
 (3)
 	Ta chứng minh (3)
 	(+) Giả sử a b và giả thiết cho a -b a 
 	(+) Giả sử a < b và theo giả thiết - a<b 
 	Vậy BĐT (3)luôn đúng ta có (đpcm)
Ví dụ 3: Cho . Chứng minh rằng : 
Giải
n=1: bất đẳng thức luôn đúng
n=k (): giả sử bất đẳng thức đúng, tức là: 
n= k+1 . Ta cần chứng minh: 
Ta có: 
 Bất đẳng thức đúng với n= k+1
V ậy theo nguyên lý quy nạp: ,
Ví dụ 4: Cho thoả mãn . Chứng minh rằng: 	
Giải n=1: Bài toán đúng
n=k (): giả sử bất đẳng thức đúng, tức là: 
n= k+1 . Ta cần chứng minh: 
Ta có: 
 (Vì )
Bất đẳng thức đúng với n= k+1
Vậy theo nguyên lý quy nạp: 
Ví dụ 5: Cho , . Chứng minh rằng: 
Giải n=1: Bất đẳng thức luôn đúng
n=k ():giả sử bất đẳng thức đúng, tức là: 
n= k+1 . Ta cần chứng minh: (1)
Thật vậy: + 
Vậy (1) được chứng minh
Ví dụ 6: Cho , . Chứng minh rằng: 
Giải:
n=1: Bất đẳng thức luôn đúng
n=k ():giả sử bất đẳng thức đúng, tức là: 
n= k+1 . Ta cần chứng minh: (1)
Đặt: 
Vậy (1) đựơc chứng minh
Ví dụ 7: Chứng minh rằng: 
Giải: n=2 
n=k: giả sử bất đẳng thức đúng, tức là: 
n= k+1:Ta c ó: 
	 (vì )
 Bất đẳng thức đúng với n= k+1
	Vậy 
Ví dụ 8: Chứng minh rằng: 
Giải: n=1: Bất đẳng thức luôn đúng
	n=k :giả sử bất đẳng thức đúng, tức là: 
n= k+1 . Ta cần chứng minh: 
	Ta có: 
Nên: 
	Bất đẳng thức đúng với n= k+1. Vậy: +
Phương pháp 16: Chứng minh phản chứng
 	Kiến thức:
 	1) Giả sử phải chứng minh bất đẳng thức nào đó đúng , ta hãy giả sử bất đẳng thức đó sai và kết hợp với các giả thiết để suy ra điều vô lý , điều vô lý có thể là điều trái với giả thiết , có thể là điều trái ngược nhau .Từ đó suy ra bất đẳng thức cần chứng minh là đúng
 	2) Giả sử ta phải chứng minh luận đề “p q”
Muốn chứng minh (với : giả thiết đúng, : kết luận đúng) phép chứng minh được thực hiên như sau:
Giả sử không có ( hoặc sai) suy ra điều vô lý hoặc sai. Vậy phải có (hay đúng)
Như vậy để phủ định luận đề ta ghép tất cả giả thiết của luận đề với phủ định kết luận của nó .
 Ta thường dùng 5 hình thức chứng minh phản chứng sau :
 A - Dùng mệnh đề phản đảo : “P Q”
 B – Phủ định rôi suy trái giả thiết 
 C – Phủ định rồi suy trái với điều đúng 
 D – Phủ định rồi suy ra 2 điều trái ngược nhau
 E – Phủ định rồi suy ra kết luận :
Ví dụ 1: Cho ba số a,b,c thỏa mãn a +b+c > 0 , ab+bc+ac > 0 , abc > 0
 	Chứng minh rằng a > 0 , b > 0 , c > 0
 	Giải:
 Giả sử a 0 thì từ abc > 0 a 0 do đó a 0 và a < 0 cb < 0
 Từ ab+bc+ca > 0 a(b+c) > -bc > 0
 Vì a 0 b + c < 0
 a 0
 Vậy a > 0 tương tự ta có b > 0 , c > 0
Ví dụ 2:Cho 4 số a , b , c ,d thỏa mãn điều kiện 
 ac 2.(b+d) .Chứng minh rằng có ít nhất một trong các bất đẳng thức sau là sai:
 , 
 	Giải:
 Giả sử 2 bất đẳng thức : , đều đúng khi đó cộng các vế ta được
 (1)
 Theo giả thiết ta có 4(b+d) 2ac (2)
 	Từ (1) và (2) hay (vô lý)
 	Vậy trong 2 bất đẳng thức và có ít nhất một các bất đẳng thức sai
Ví dụ 3:Cho x,y,z > 0 và xyz = 1. Chứng minh rằng 
 Nếu x+y+z > thì có một trong ba số này lớn hơn 1
 	Giải :Ta có (x-1).(y-1).(z-1) =xyz – xy- yz + x + y+ z –1
 	=x + y + z – () vì xyz = theo giả thiết x+y +z > 
nên (x-1).(y-1).(z-1) > 0
 	Trong ba số x-1 , y-1 , z-1 chỉ có một số dương
 	Thật vậy nếu cả ba số dương thì x,y,z > 1 xyz > 1 (trái giả thiết)
 	Còn nếu 2 trong 3 số đó dương thì (x-1).(y-1).(z-1) < 0 (vô lý)
 	Vậy có một và chỉ một trong ba số x , y,z lớn hơn 1
Ví dụ 4: Cho và a.b.c=1. Chứng minh rằng: (Bất đẳng thức Cauchy 3 số)
Giải: Giả sử ngược l ại: 
Xét : 
Có ==
(Vì ) vô lý. Vậy: 
Ví dụ 5:
	Chứng minh rằng không tồn tại các số a, b, c đồng thời thỏa mãn (1),(2),(3):
	 (1)
	(2)
	(3)
Giải: Giả sử tồn tại các số a, b, c đồng thời thỏa mãn (1),(2),(3), lúc đó:
 	(1’)
 	(2’)
 (3’)
Nhân (1’), (2’) và (3’) vế với vế ta được: 
 Vô lý. Vậy bài toán được chứng minh
Phương pháp 17 : 	Sử dụng biến đổi lượng giác 
1. Nếu thì đặt x = Rcos, ; hoặc x = Rsin
2. Nếu thì đặt x = 
3.Nếu thì đặt 
4. Nếu thì đặt 
5. Nếu trong bài toán xuất hiện biểu thức :
Thì đặt: 
Ví dụ 1: Cmr :
Giải : 
Đặt : 
Khi đó :
Ví dụ 2 : Cho .Chứng minh rằng :
Giải :
Đặt :
Ví dụ 3: Cho .Chứng minh rằng :
Giải :Đặt:
Phương pháp 18: 	Sử dụng khai triển nhị thức Newton.
Kiến thức:
Công thức nhị thức Newton
.
Trong đó hệ số.
Một số tính chất đặt biệt của khai triển nhị thức Newton:
+ Trong khai triển (a + b)n có n + 1 số hạng.
+ Số mũ của a giảm dần từ n đến 0, trong khi đó số mũ của b tăng từ 0 đến n. Trong mỗi số hạng của khai trtiển nhị thức Newton có tổng số mũ của a và b bằng n.
+Các hệ số cách đều hai đầu thì bằng nhau
 .
+ Số hạng thứ k + 1 là 
Ví dụ 1:
Chứng minh rằng (bất đẳng thức bernoulli)
Giải
Ta có: (đpcm)
Ví dụ 2:
Chứng minh rằng:
a)
b)
Giải
Theo công thức khai triển nhị thức Newton ta có:
b) Đặt 
Theo câu (a) ta có:
Phương pháp 19: 	Sử dụng tích phân
Hàm số: liên tục, lúc đó:
* Nếu thì 
* Nếu thì 
* Nếu và thì .
*.
* Nếu thì (m, M là hằng số)
Ví dụ 1: Cho A, B, C là ba góc của tam giác. 
Chưng minh rằng: 
Giải:
Đặt 
Áp dụng bất đẳng thức Jensen cho:
Ví dụ 2: Chứng minh: 
Giải
Trên đoạn ta có:
PHẦN III : CÁC BÀI TẬP NÂNG CAO
*Dùng định nghĩa 
 	1) Cho abc = 1 và . . Chứng minh rằngb2+c2> ab+bc+ac
Giải: Ta xét hiệu: b2+c2- ab- bc – ac = b2+c2- ab- bc – ac
= ( b2+c2- ab– ac+ 2bc) +3bc =(-b- c)2 +
=(-b- c)2 +>0 (vì abc=1 và a3 > 36 nên a >0 )
Vậy : b2+c2> ab+bc+ac Điều phải chứng minh
2) Chứng minh rằng 
 a) 
 b) với mọi số thực a , b, c ta có 
 c) 
 	Giải:
 	a) Xét hiệu: = = H
H0 ta có điều phải chứng minh
 	b) Vế trái có thể viết H = H > 0 ta có đpcm
 c) vế trái có thể viết H = H 0 ta có điều phải chứng minh
* Dùng biến đổi tương đương
 	1) Cho x > y và xy =1 .Chứng minh rằng 
 Giải: Ta có (vì xy = 1)
 Do đó BĐT cần chứng minh tương đương với 
 	BĐT cuối đúng nên ta có điều phải chứng minh
2) Cho xy 1 .Chứng minh rằng 
 	Giải:
 Ta có 
 	 BĐT cuối này đúng do xy > 1 .Vậy ta có đpcm
* Dùng bất đẳng thức phụ
1) Cho a , b, c là các số thực và a + b +c =1 Chứng minh rằng 
 	Giải: áp dụng BĐT BunhiaCôpski cho 3 số (1,1,1) và (a,b,c)
 	Ta có 
 (vì a+b+c =1 ) (đpcm)
 	2) Cho a,b,c là các số dương . Chứng minh rằng (1)
Giải: (1) 
áp dụng BĐT phụ Với x,y > 0. Ta có BĐT cuối cùng luôn đúng
 Vậy (đpcm)
* Dùng phương pháp bắc cầu
 	1) Cho 0 < a, b,c <1 .Chứng minh rằng :
 	Giải: Do a <1 <1 và b <1
 Nên 
Hay (1)
Mặt khác 0 <a,b <1 ; 
 	Vậy 
 	Tương tự ta có 
 	 (đpcm)
 	2) So sánh 31 và 17
Giải: Ta thấy < 
 Mặt khác Vậy 31 < 17 (đpcm)
 	* Dùng tính chất tỉ số
 	1) Cho a ,b ,c ,d > 0 .Cminh rằng:
 	Giải: Vì a ,b ,c ,d > 0 nên ta có
 (1)
 (2)
 (3)
 	Cộng các vế của 4 bất đẳng thức trên ta có :
 (đpcm)
 	2) Cho a ,b,c là số đo ba cạnh tam giác
 	Chứng minh rằng :
 	Giải: Vì a ,b ,c là số đo ba cạnh của tam giác nên ta có a,b,c > 0
 Và a < b +c ; b <a+c ; c < a+b
 Từ (1) 
 Mặt khác 
 	Vậy ta có Tương tự ta có 
 Cộng từng vế ba bất đẳng thức trên ta có :
 (đpcm)
* Phương pháp làm trội :
 	1) Chứng minh BĐT sau :
 a) 
 b) 
 	Giải: 
 a) Ta có : 
Cho n chạy từ 1 đến k .Sau đó cộng lại ta có
 (đpcm)
 b) Ta có: 
 < (đpcm)
PHẦN IV : ỨNG DỤNG CỦA BẤT ĐẲNG THỨC
1/ Dùng bất đẳng thức để tìm cưc trị
 	Kiến thức:
 - Nếu f(x) A thì f(x) có giá trị nhỏ nhất là A
 - Nếu f(x) B thì f(x) có giá trị lớn nhất là B
 	Ví dụ 1 :Tìm giá trị nhỏ nhất của :T = |x-1| + |x-2| +|x-3| + |x-4|
 	Giải: Ta có |x-1| + |x-4| = |x-1| + |4-x| |x-1+4-x| = 3 (1)
 Và 	(2)
 	Vậy T = |x-1| + |x-2| +|x-3| + |x-4| 1+3 = 4
 	Ta có từ (1) Dấu bằng xảy ra khi 
 (2) Dấu bằng xảy ra khi 
 	Vậy T có giá trị nhỏ nhất là 4 khi 
 	Ví dụ 2 :
Tìm giá trị lớn nhất của S = xyz.(x+y).(y+z).(z+x) với x,y,z > 0 và x+y+z =1
 	Giải: Vì x,y,z > 0 ,áp dụng BĐT Côsi ta có
 x+ y + z 
áp dụng bất đẳng thức Côsi cho x+y ; y+z ; x+z ta có 
 	Dấu bằng xảy ra khi x=y=z=
 Vậy S . Vậy S có giá trị lớn nhất là khi x=y=z=
 	Ví dụ 3: Cho xy+yz+zx = 1. Tìm giá trị nhỏ nhất của 
 	Giải: Áp dụng BĐT Bunhiacốpski cho 6 số (x,y,z) ;(x,y,z)
 	Ta có (1)
 	Áp dụng BĐT Bunhiacốpski cho () và (1,1,1)
Ta có 
 	Từ (1) và (2) 
 	Vậy có giá trị nhỏ nhất là khi x=y=z=
 	Ví dụ 4 : Trong tam giác vuông có cùng cạnh huyền , tam giác vuông nào có diện tích lớn nhất
 Giải: 	Gọi cạnh huyền của tam giác là 2a
 Đường cao thuộc cạnh huyền là h
 Hình chiếu các cạnh góc vuông lên cạnh huyền là x,y
 Ta có S =
 	Vì a không đổi mà x+y = 2a. Vậy S lớn nhất khi x.y lớn nhất 
 Vậy trong các tam giác có cùng cạnh huyền thì tam giác vuông cân có diện tích lớn

File đính kèm:

  • doc19_phong_phap_cm_bat_dang_thuc.doc
Giáo án liên quan