Tóm tắt kiến thức về Dao động điều hòa

1) Con lắc lò xo: Con lắc lò xo gồm: một hòn bi có khối lượng m (kg), kích thước không đáng kể; gắn với lò xo có độ cứng k (N/m); khối lượng lò xo không đáng kể, một đầu lò xo cố định đặt nằm ngang. Vật có thể chuyển động không ma sát trên trục nằm ngang xuyên qua vật hoặc treo, đặt thẳng đứng, hoặc đặt trên mặt phẳng nghiêng.

+ Điều kiện con lắc dao động điều hòa:

- Chuyển động không ma sát (bỏ qua ma sát)

- Độ biến dạng lò xo khi CĐ, nằm trong giới hạn đàn hồi.

 

doc8 trang | Chia sẻ: dung89st | Lượt xem: 1481 | Lượt tải: 1download
Bạn đang xem nội dung tài liệu Tóm tắt kiến thức về Dao động điều hòa, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
TÓM TẮT KIẾN THỨC VỀ DAO ĐỘNG ĐIỀU HÒA 
Phần A. ĐẠI CƯƠNG VỀ DAO ĐỘNG ĐIỀU HÒA:
1) Dao động, dao động tuần hoàn, dao động điều hoà:
a) Dao động là chuyển động trong không gian hẹp, vật lặp đi lặp lại nhiều lần quang vị trí cân bằng; hoặc là chuyển động tuần hoàn xung quang vị trí cân bằng.
b) Dao động tuần hoàn:
+ Là dao động mà sau khoảng thời gian nhất định vật trở lại trạng thái cũ.
+ Chu kì dao động: là khoảng thời gian ngắn nhất để trạng thái dao động lặp lại như cũ hoặc là khoảng thời gian vật thực hiện một lần dao động. Kí hiệu T, đơn vị giây (s).
+ Tần số là số lần vật dao động trong một đơn vị thời gian hoặc là đại lượng nghịch đảo của chu kì. Kí hiệu f, đơn vị héc (Hz). hay . (T.f = 1)
2) Dao động điều hoà là chuyển động của một vật mà li độ biến đổi theo định luật dạng cos (hay sin) theo thời gian: x = Acos(wt + j) = Acos(2pft + j) = Acos(+ j), trong đó A, w và j là các hằng số.
x là li độ dao độngx (m, cm); A là biên độ (m, cm); w là tần số góc (rad/s); 
(wt + j) là pha dao động (rad); j là pha ban đầu (rad).
Lưu ý: Dao động điều hòa là hình chiếu của vật chuyển động tròn đều trên trục nằm trong mặt phẳng quỹ đạo.
+ x: li độ dao động (m,cm) cho biết vị trí vật so với VTCB.
+ A: li độ cực đại – biên độ dao động (m. cm) cho biết phạm vi vật dao động.
+ (wt + j): Pha dao động (rad) là đại lượng trung gian, cho biết trạng thái vật dao động,
+ (wt + j): Pha ban đầu (rad) cho biết trạng thái ban đấu của vật.
+ w: tần số góc (rad/s) cho phép xác định chu kỳ và tần số vật dao động. ; 
3) Vận tốc, gia tốc: + v = x’ = - Awsin(wt + j) = Awcos(wt + j + ). 
Vận tốc sớm pha so với li độ, trễ pha so với gia tốc.
Vận tốc cực đại vmax = Aw khi vật ở VTCB (a=0); vận tốc cực tiểu vmin = 0 khi vật ở hai biên (amax).
+ a = x’’ = v’ = - Aw2cos(wt + j) = - w2x.
Gia tốc ngược pha so với li độ; gia tốc sớm pha so với vận tốc.
Gia tốc cực đại amax = Aw2 khi vật ở hai biên (v=0); gia tốc cực tiểu amin = 0 khi vật ở VTCB (vmax).
4) Năng lượng: Là cơ năng E: Với E = Et + Eđ
Et = (wt + j ) ; Eđ = w2.sin2(wt + j) = (wt + j) 
E = kA2 = mA2w2 = E0 = const. Mặt khác: và 
Nên Et = ; Eđ = .
Động năng và thế năng của dao động tuần hoàn có cùng tần số w’ = 2w; chu kỳ T’ = T/2.
Động năng tăng thi thế năng giảm và ngược lại, Tại thời điểm bất kỳ tổng động năng và thế năng không đổi – nó bảo toàn.
Sau khoảng thời gian ngắn nhất là T/4 thì động năng bằng thế năng, hay 1 chu kỳ dao động có 4 lần động năng bằng thế năng.
5) Hệ thức độc lập với thời gian: A2w2 = x2w2 + v2.
Từ hệ thức này ta tìm được 1 đai lượng nếu biết 3 đại lượng kia:
; ; ; 
6) Một vật khối lượng m, mỗi khi dịch chuyển khỏi vị trí cân bằng (VTCB) O một đoạn x, chịu tác dụng của một lực hồi phục (phục hồi) F = - kx (trong đó k là biểu thức gồm 1 hay nhiều đại lượng) thì vật ấy sẽ dao động điều hoà quanh O với tần số góc . Biên độ dao động A và pha ban đầu f phụ thuộc vào cách kích thích ban đầu và cách chọn gốc thời gian.
II) Phương pháp viết phương trình (PT) dao động:
Bước 1: Chọn hệ qui chiếu:
+ Trục Ox có gốc O là VTCB, phương Ox º phương dao động, chiều dương tùy ý (Thường phải theo đầu bài).
+ Gốc thời gian lúc bắt đầu khảo sát vật dao động.
Bước 2: Tìm w, A và j:
+ Tìm w: 
+ Tìm A & j: Khi t = 0 => Giải hệ hai phương trình ta tìm được A và j.
Hoặc tìm A: 
Bước 3: Thay A, w, j vào phương trình tổng quát x = Acos(wt + j) ta tìm được PT dao động.
LƯU Ý: (vẽ hình)
A/2
-A/2
0
-A
A/
-A/
A/2
-A/2
p/6
p/4
p/3
3p/4
p/3
p/2
O
-p/2
-p/3
p/4
p/6
-p/4
-p/6
2p/3
-2p/3
5p/4
7p/6
5p/6
p
A
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
16 vị trí đặc biệt của vật tương ứng với pha dao động
Dựa vào liên hệ giữa dao động điều hòa và vật chuyển động tròn đều để xác định pha ban đầu của vật dao động.
+ v0 > 0 : p j > 0.
+ v0 = 0 (Li độ có giá trị cực đại): 
- vật ở chiều dương: j = 0; 
- vật ở chiều âm: j = p.
+ v0max hay vật ở CTCB (x0 = 0): 
- CĐ theo chiều dương: ; 
- CĐ theo chiều âm:.
Liên hệ giữa vị trí ban đầu
của vật và pha ban đầu biểu
diễn như hình bên.
III) Tìm thời điểm vật có li độ x1: (Xác định thời điểm vật có vận tốc v1 hay gia tốc a1 cũng tương tự)
Giải PT: x = Acos(wt + j) = x1 => 
=> =>
Lưu ý: 
+ Một li độ bất kỳ (trừ 2 biên) vật có 2 thời điểm t1 và t2 ứng với hai vận tốc (có cùng giá trị) chuyển động theo hai chiều DƯƠNG và ÂM. .
+ Trong hai giá trị t1 và t2 thì t1 là thời điểm gần vị trí vật, t2 xa vị trí vật hơn.
+ Thời điểm t1 nhỏ nhất là lần đầu tiên vật qua vị trí x1 (các lần lẻ); vật CĐ theo chiều DƯƠNG (hoặc ÂM).
+ Thời điểm t2 nhỏ nhất là lần thứ 2 vật qua vị trí x1 (hay lần chẵn đầu tiên); vật CĐ theo chiều ÂM (hoặc DƯƠNG).
+ Tùy theo yêu cầu của đầu bài mà ta chọn t1 hay t2 và các giái trị k tương ứng.
IV) Tìm khoảng thời gian (TG) vật đi từ li độ x1 đến x2:
Khoảng thời gian ngắn nhất vật đi từ x1 đến x2 là:
A/2
-A/2
A
-A
A/
-A/
A/2
-A/2
p/6
p/4
p/3
T/4; A
T/12; A/2
T/6; A/2
T/6;A/2
T/12
O
T/8;A/
T/8;A-A/
T/12;A-A/2
Thời gian vật CĐ và quãng đường tương ứng
+ Tìm vị trí x1 tương ứng với vật trên đường tròn có j1. (hình dưới bên trái)
+ Tìm vị trí x2 tương ứng với vật trên đường tròn có j2.
với => 
; tính bằng rad. 
LƯU Ý: (Vẽ hình)
j1
j2
Dj
x2
x1
M1
M2
x
O
+ TG vật đi từ O đến A bằng từ A về O bằng từ O về -A bằng từ -A về O: Dt = T/4
+ TG vật đi từ O đến A/2 bằng từ A/2 về O bằng từ O về -A/2 bằng từ -A/2 về O: Dt = T/12
+ TG vật đi từ A đến A/2 bằng từ A/2 về A bằng từ -A về -A/2 bằng từ -A/2 về -A: Dt = T/6
+ TG vật đi từ A đến bằng từ về A bằng từ –A về –bằng từ - về –A: Dt = T/12
+ TG vật đi từ O đến bằng từ về O bằng từ O về –bằng từ – về O: Dt = T/6
+ TG vật đi từ A đến bằng từ về A bằng từ –A về –bằng từ – về –A: Dt = T/8
+ TG vật đi từ O đến bằng từ về O bằng từ O về -bằng từ – về O: Dt = T/8
+ TG vật đi từ A đến –A bằng từ –A về A : Dt = T/2
* Với vật chuyển động tròn đều:
TG
T
T/2
T/3
T/4
T/5
T/6
T/8
T/10
T/12
T/15
T/18
T/24
Góc(pha)
2p
p
2p/3
p/2
2p/5
p/3
p/4
p/5
p/6
2p/15
p/9
p/12
V) Tìm quãng đường vật chuyển động trong khoảng thời gian Dt = t2 – t1:
+ Tìm T ; + Phân tích: Dt = nT + dt ; + Quãng đường vật đi trong TG Dt là: s = n.4A + Ds
+ Quãng đường vật đi trong TG dt < T là Ds được xác định như sau:
- Tìm: (v1 và v2 chỉ cần xác định dấu)
- Vẽ hình, xác định vị trí lúc đầu (t1 ứng với x1) và lúc sau (t2 ứng với x2).- Từ hình vẽ xác định Ds.
S2 = x1 – x2
S2 = x1 + 2A + x2
1
S2 = x1 + 4A – x2
1
1
1
2
2
2
2
2
1
CÓ THỂ DÙNG MÁY TÍNH:
* Tìm T = 2p/w; * Tìm Dt = t2 – t1 = nT + dt (với dt < T)
* Tìm Ds trong khoảng thời gian dt: ; * s = 4.A.n + ds.
LƯU Ý: (vẽ hình)
+ TG T vật đi quãng đường 4A; 	+ TG T/2 vật đi quãng đường 2A
+ TG T/3 vật đi quãng đường ngắn nhất là A; dài nhất là A
+ TG T/4 vật đi quãng đường ngắn nhất là A(2 – ) » 0,39A; dài nhất là A
+ TG T/6 vật đi quãng đường ngắn nhất là A(2 – ) » 0,27A; dài nhất là A
* Tìm tốc độ trung bình: ; với s và Dt tình theo cách trên.
VI) Tổng hợp hai dao động điều hòa cùng phương, cùng tần số bằng phương pháp véc tơ quay:
Mỗi dao động điều hoà được biểu diễn bằng một véc tơ quay: Vẽ vectơcó độ dài bằng biên độ A, lúc đầu hợp với trục Ox làm góc j. Cho véc tơ quay quanh O với vận tốc góc w thì hình chiếu của véc tơ quay ở thời điểm bất kỳ lên trục Ox là dao động điều hoà x = Acos(wt + j).
Tổng hợp 2 dao động điều hoà cùng phương, cùng tần số là cộng hai hàm x1 và x2 dạng cosin. Nếu hai hàm có cùng tần số thì có thể dùng phương pháp Fresnel: vẽ các véc tơ quay biểu diễn cho các dao động thành phần, xác định véc tơ tổng, suy ra dao động tổng hợp.
* Tổng hợp 2 dao động hình sin cùng tần số:
x1 = A1cos(wt + j1); x2 = A2cos(wt + j2). Dao động tổng hợp: x = x1 + x2 = Acos(wt + j).
Với: và ; 
- Biên độ dao động tổng hợp A luôn thỏa mãn : 
- Độ lệch pha φ thỏa mãn: j1 < j < j2 
* Độ lệch pha Δφ = φ2 - φ1 
- Δφ > 0 => φ2 > φ1 ta nói dao động 2 sớm pha hơn dao động 1 ( dao động 1 trễ pha hơn dao động 2)
- Δφ φ2 < φ1 ta nói dao động 2 trễ pha hơn dao động 1 ( dao động 1 sớm pha hơn dao động 2)
- Δφ = 0 hay = 2kp: hai dao động cùng pha => A = A1 + A2.
- Δφ = (2k + 1)p: hai dao động ngược pha => A = ½A1 – A2½
- Δφ = (2k + 1)p/2: hai dao động vuông pha => .
* Hàm sin đổi thành hàm cos: bớt đi p/2; hàm cos đổi thành hàm sin: thêm vào p/2.
* tanj = + ¥ : j = p/2; tanj = – ¥ : j = – p/2.
PHẦN II. CON LẮC LÒ XO
1) Con lắc lò xo: Con lắc lò xo gồm: một hòn bi có khối lượng m (kg), kích thước không đáng kể; gắn với lò xo có độ cứng k (N/m); khối lượng lò xo không đáng kể, một đầu lò xo cố định đặt nằm ngang. Vật có thể chuyển động không ma sát trên trục nằm ngang xuyên qua vật hoặc treo, đặt thẳng đứng, hoặc đặt trên mặt phẳng nghiêng.
+ Điều kiện con lắc dao động điều hòa:
- Chuyển động không ma sát (bỏ qua ma sát)
- Độ biến dạng lò xo khi CĐ, nằm trong giới hạn đàn hồi.
+ Con lắc dao động với: ; ; .
+ Vật m1 dao động chu kỳ T1, vật m1 dao động chu kỳ T2 thì vật m = m1 + m2 sẽ có T2 = T12 + T22
2) Ở VTCB là xo biến dạng là (nằm ngang: ; treo (đặt) thẳng đứng: ; trên mặt phẳng nghiêng: .
3) Lực đàn hồi, lực hồi phục của lò xo: ; 
+ Con lắc nằm ngang: ; ; ; (giống Fđh).
khi Dl0 < A
khi Dl0 > A
+ Các trường hợp khác: ; 
 ; .
4) Vận tốc, gia tốc, năng lượng: tương tự như dao động điều hòa, nhưng với k là độ cứng của lò xo.
5) Liên hệ giữa độ biến dạng lò xo ở VTCB và chu kỳ, tần số dao động: 
; ; 
Ví dụ: ; g »10m/s2 » p => w = 10p; T = 0,2s; f = 5Hz.
; w = 20; T = p/20 (s); f = 20/p (Hz)
6) Liên hệ giữa độ biến dạn lò xo ở VTCB với biên độ A và thời gian lò xo nén (dãn) với chu kỳ T:
+ Con lắc lò xo treo thẳng đứng: ở VTCB lò xo dãn Dl0 = mg/k; khi dao động với biên độ A. Nếu:
- Dl0 = A/2 ó wtnén = 2.p/3 = 2p/3 => tnén = T/3 => tdãn = 2T/3 = 2tnén.
- Dl0 = A/ ó wtnén = 2.p/4 = p/2 => tnén = T/4 => tdãn = 3T/4 = 3tnén.
- Dl0 = A/2 ó wtnén = 2.p/6 = p/3 => tnén = T/6 => tdãn = 5T/6 = 5tnén.
- tnén = T/5 , tdãn = 4T/5 = 4tnén => wtn = 360 = 0,4p => Dl0 = 0,809A
+ Con lắc lò xo đặt thẳng đứng: ở VTCB lò xo nén Dl0 = mg/k; khi dao động với biên độ A. Tương tự như trên nhưng ta thay nén bằng dãn, dãn bằng nén.
7) Cắt , ghép lò xo :
 a/ Từ 1 lò xo cắt thành 2 lò xo: Độ cứng các log xo tỉ lệ nghịch với chiều dài. k1l1 = k2l2 = k0l0. hay: 
 b/ Lò xo ghép nối tiếp: Hai lò xo có k1 & k2 ghép NT có độ cứng k , thì hay 
 c/ Lò xo ghép song song: Hai lò xo có độ cứng k1 & k2 // thì độ cứng k thì k = k1 + k2
 d/ Dao động của vật gắn với hệ lò xo: 
Lò xo hoặc hên lò xo nằm ngang , thẳng đứng hay đặt nghiêng ... đều dao động điều hoà với chu kỳ 
T = ; tần số: f = ; Với tần số góc: w = ; k Là độ cứng của hệ lò xo; 
Hệ lò xo nối tiếp: => T2 = T12 + T22; Hệ lò xo song song: k = k1 + k2 => 
PHẦN III. CON LẮC ĐƠN
1) Cấu tạo: Con lắc đơn gồm một sợi dây mảnh không co dãn dài l, một đầu treo cố định; một đầu gắn với vật nhỏ có khối lượng m.
2) Phương trình chuyển động của vật:
s = s0 cos(wt + j), hoặc a = a0cos (wt + j) với s = al & s0 = a0l ; Tần số w = ; Chu kỳ: T = 2p
Điều kiện a0 < 100 và không ma sát (ở điểm treo và với môi trường)
3) Năng lượng dao động của con lắc đơn: 
a) Mọi góc lệch a: E = Etm = mgl(1 – cosa0) = const.
b) Khi dao động điều hoà (a0 < 100) : E = mgla02/2 = mgs02/2l = mw2s02/2 = const
4) Sự thay đổi chu kỳ theo chiều dài dây treo:
- Áp dụng công thức tính chu ḱ, tần số: 
hoặc ; với n là số dao động thực hiện được trong thời gian .
- T ~ 
- Chu kỳ dao động của con lắc đơn có chiều dài l1 và l2 lần lượt là T1 và T2 thì:
+ Chu kỳ của con lắc có chiều dài : 
+ Chu kỳ của con lắc có chiều dài : .
5) Sự thay đổi chu kỳ theo nhiệt độ và độ cao:
a) Độ dài của thanh kim loại phụ thuộc nhiệt độ: l = l0(1 + a(t2 – t1)) = l0(1 + aDt) 
b) Gia tốc rơi tự do ở mặt nước biển: ; Ở độ cao h: ; 
Ở độ sâu h: ; .
c). Chu kỳ ở mặt biển, nhiệt độ t0: ; ở nhiệt độ t: => 
ở độ cao h: ; ;
Ở độ sâu d: ; 
d) Vận dụng. Gọi chu kỳ ban đầu của con lắc là T0, Chu kỳ sau khi thay đổi là T. 
Đối với mỗi đại lượng thay đổi ta đi thiết lập: ;
Nếu đồng hồ chạy chậm lại; đồng hồ chạy nhanh lên. 
Thời gian đồng hồ chỉ tỉ lệ nghịch với chu kỳ: => => 
Thời gian nhanh chậm trong thời gian N sẽ bằng: ; Dt > 0: đồng hồ chạy nhanh; Dt < 0: 
đồng hộ chạy châm.
Khi nhiệt độ thay đổi: nhiệt độ tăng: Dt > 0; nhiệt độ giảm Dt < 0.
Khi độ cao thay đổi: lên cao đồng hồ chạy chậm (xuống thấp đồng hồ chạy nhanh)
Khi h & l thay đổi: Dt > 0: chạy nhanh, Dt = 0: chạy đúng, Dt < 0: chạy đúng.
Khi độ sâu thay đổi: Xuống sâu đồng hồ chạy chậm.
Khi d và l thay đổi: Dt > 0: chạy nhanh, Dt = 0: chạy đúng, Dt < 0: chạy đúng.
Từ đó ta tìm các đại lượng theo yêu cầu của đầu bài.
6) Vận tốc và lực căng dây treo:
+ Khi con lắc ở vị trí li độ góc vận tốc và lực căng tương ứng của vật: 
 và 
+ Khi nhỏ: ; + Khi vật ở biên: - Khi nhỏ: 
+ Khi vật qua VTCB: + Khi nhỏ: 
7) Con lắc có thêm ngoại lực không đổi tác dụng:
Ngoài trọng lực, con lắc chịu tác dụng một lực không đổi F thì tổng P và F là P’ = P + F; P’ gọi là trọng lực hiệu dụng. Gia tốc ; 
Độ lớn: ; với a là góc giữa ( hay (
Chu kỳ dao động của con lắc đơn khi đó: 
a. Lực điện trường:
+ Lực điện trường : => 
 * Nếu q > 0 : * Nếu q < 0 : 
+ Điện trường đều : 
+ Chu kì con lắc trong điện trường : ; Với là gia tốc trọng trường hiệu dụng.
+ Nếu thẳng đứng: hướng xuống: ; + Hướng lên: 
+ Nếu hướng theo phương nằm ngang : 
Với góc lệch của phương dây treo với phương thẳng đứng khi vật ở vị trí cân bằng; 
b. Lực quán tính: Lực quán tính: , độ lớn F = ma ( )
+ Chuyển động nhanh dần đều: => => 
+ Chuyển động chậm dần đều: => => 
+ Nhanh dần đều đi lên hoặc chậm dần đều đi xuống: g’ = g + a
+ Chậm đều đi lên hoặc nhanh dần đều đi xuống: g’ = g – a
+ Lên dốc nhanh dần đều hay xuống dốc chậm dần đều: song song với dốc hướng xuống:
; a là góc nghiêng của dốc.
+ Xuống dốc nhanh dần đều hay lên dốc chậm dần đều: song song với dốc hướng lên:
; a là góc nghiêng của dốc.
VTCB dây treo lệch với phương thẳng đứng góc b; với 
c. Lực đẩy Ácsimét: F = rgV (luông thẳng đứng hướng lên)
 Trong đó: r là khối lượng riêng của chất lỏng hay chất khí.
	 g là gia tốc rơi tự do.
	 V là thể tích của phần vật chìm trong chất lỏng hay chất khí đó.
8) Phương pháp trùng phùng:
Hai con lắc cùng dao động qua vị trí cân bằng một lúc & cùng chiều, sau thời gian t ngắn nhất lại cùng vị trí cân bằng & cùng chiều . Ta đã biết chu kỳ T0 của một con lắc & chưa biết chu kỳ T của con lắc kia . 
* Nếu co lắc có chu kỳ T chưa biết dao động nhanh hơn con lắc có chu kỳ T0 hay T < T0 thì trong thời gian t con lắc có chu kỳ T sẽ dao động nhiều hơn con lắc chu kỳ T0 một lần: t = nT0 = (n + 1)T.
* Nếu co lắc có chu kỳ T chưa biết dao động chậm hơn con lắc có chu kỳ T0 hay T > T0 thì trong thời gian t con lắc có chu kỳ T sẽ dao động ít hơn con lắc chu kỳ T0 một lần: t = nT0 = (n - 1)T
Từ đó ta tìm được n , T và và tìm được l hoặc g (tùy theo đầu bài)
9) Chuyển động con lắc có ma sát:
a) Lực ma sát không đổi: (con lắc lò xo): Fms = mN thì sau nửa chu kỳ biên độ giảm là: 
; cả chu kỳ biên độ giảm là .
Sau n chu kỳ con lắc dừng lại khi đó độ giảm biên độ là A0 vậy: 
Ta tìm được ; Thời gian dao động là t = n.T; Quãng đường vật đi là 
b) Biên độ giảm theo cấp số nhân lùi vô hạn:
Sau 1 chu kỳ: a1 = a0.q; sau n chu kỳ: an = a0.qn. Thường cho a0, an và số chu kỳ n ta tìm được q
(hoặc cho s0 và sn cũng như A0 và An ta tìm được hay )
Sau 1 chu kỳ năng lượng giảm là: 
Năng lượng cung cấp trong thời gian t là: W = n.DW; với n = t/T là số chu kỳ dao động.
Hao phí do cung cấp là H’(%) => hiệu suất cung cấp là H =100 – H’ thì năng lượng thực thế cung cấp là: 
10) Các loại dao động:
a) Dao động tắt dần: là dao động có biên độ giảm dần theo thời gian.
Nguyên nhân do ma sát của môi trường.
b) Dao động tự do: là dao động mà chu kỳ (tần số) chỉ phụ thuộc vào cấu tạo hệ vật dao động.
c) Dao động duy trì: là dao động có biên độ không đổi với tần dố bằng tần số riêng của vật.
Hệ dao động duy trì còn gọi là hệ tự dao động (cơ cấu bù đắp năng lượng do hệ tự điều khiển)
d) Dao động cưỡng bức: là dao động chịu tác dụng của ngoại lực biến thiên tuần hoàn theo thời gian.
Biên độ dao động cưỡng bức phụ thuộc vào (3): Biên độ ngoại lực; lực ma sát của môi trường; độ chênh lệc tần số lực cưỡng bức và tần số riêng.
e) Dao động cộng hưởng: Là dao động cưỡng bức khi tần số ngoại lực bằng tần số riêng thì biên độ dao động cực đại.
Biên độ cộng hưởng phụ thuộc vào lực cản (ma sát) của môi trường.
(Khác nhau giữa dao động duy trì và dao động cộng hưởng là cách tác dụng lực: dao động duy trì lực này do hệ tự điều khiển còn cộng hưởng là lực bên ngoài tác dụng. Giống nhau là w = w0).

File đính kèm:

  • docTom_tat_kien_thuc_co_ban_dao_dong_co_20150725_101934.doc
Giáo án liên quan