Toán hoc - Kiến thức cơ bản và nâng cao về tam giác đồng dạng

21. Cho ΔABC có ba đường trung tuyến cắt nhau tại O. Gọi P, Q, R, D, H, K theo

thứ tự là trung điểm của các đoạn thẳng OA, OB, OC, AB, AC, BC.

a. Chứng minh ΔKHD ΔPQR, tìm tỉ số đồng dạng.

b. Tính chu vi ΔPQR, ΔABC, biết chu vi ΔKHD bằng 100 cm.

pdf30 trang | Chia sẻ: anhquan78 | Lượt xem: 778 | Lượt tải: 0download
Bạn đang xem trước 20 trang mẫu tài liệu Toán hoc - Kiến thức cơ bản và nâng cao về tam giác đồng dạng, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
 Cho ΔABC, BC = a, AC = b, 
^
ACB = 1200. Tính độ dài phân giác của 
^
ACB.
Xem lời giải tại:
10. Cho ΔABC. Điểm M thuộc cạnh BC sao cho 
MB
MC
=
1
2
. Kẻ MD // AC (D ∈ AB),
ME // AB (E ∈ AC).
a.  Tìm các cặp tam giác đồng dạng và tỉ số đồng dạng
b.  Tính chu vi ΔDBM; ΔEMC, biết chu vi ΔABC bằng 24 cm.
Xem lời giải tại:
11. Cho ΔABC ∼ ΔHIK theo tỉ số đồng dạng k =
2
5
a.  Tính tỉ số chu vi của hai tam giác đã cho
b.  Tính chu vi ΔHIK biết chu vi ΔABC bằng 60 cm
Xem lời giải tại:
12. Cho ΔABC, điểm M thuộc cạnh BC sao cho 
MB
MC
=
2
3
. Kẻ MH // AC (H ∈ AC),
MK // AB (K ∈ AC)
a.  Tính MB, MC biết BC = 25 cm
b.  Tính chu vi ΔABC, biết chu vi ΔKMC bằng 30 cm
c.  Chứng minh: HB.MC = BM. KM.
Xem lời giải tại:
TRƯỜNG HỢP ĐỒNGG DẠNG CẠNH ‐ CẠNH ‐ CẠNH
13. Cho điểm O nằm trong ΔABC. Gọi P, Q, R lần lượt là trung điểm của các đoạn
thẳng OA, OB, OC.
a.  Chứng minh: ΔPQR ∼ ΔABC
b.  Tính chu vi ΔPQR, biết chu vi ΔABC bằng 540 cm.
Xem lời giải tại:
14. Cho tứ giác ABCD có AB = 3 cm, BC = 10 cm, CD = 12 cm, AD = 5 cm, đường
chéo BD = 6 cm. Chứng minh:
a.  ΔABD ∼ ΔBDC
b.  Tứ giác ABCD là hình thang.
Xem lời giải tại:
15. Cho ΔABC, Aˆ = 900, AB = 24 cm, BC = 26 cm và 
ΔIMN, Iˆ = 900, IN = 25 cm, MN = 65 cm.
Chứng minh: ΔABC ∼ ΔIMN
Xem lời giải tại:
16. Cho ΔABC, Aˆ = 900 và ΔA ′B ′C ′ ,
^
A ′ = 900. Biết 
AB
A ′B ′
=
BC
B ′C ′
= 2. 
a.  Tính 
AC
A ′C ′
= ?
b.  Chứng minh: ΔABC ∼ ΔA ′B ′C ′
Xem lời giải tại:
17. Cho ΔA ′B ′C ′ ∼ ΔABC. Biết AB = 3 cm, AC = 5 cm, BC = 7 cm và nửa chu
vi của ΔA ′B ′C ′  là 30 cm. Tính độ dài các cạnh của ΔA ′B ′C ′ .
Xem lời giải tại:
18. Cho hai tam giác đồng dạng có tỉ số chu vi là 
3
4
 và hiệu hai cạnh tương ứng
của chúng là 2 cm. Tính hai cạnh đó.
Xem lời giải tại:
19. Cho ΔABC có AB :BC :AC = 4: 5 : 6. Biết ΔDEF ∼ ΔABC và cạnh nhỏ nhất
của ΔDEF là 8 cm. Tính các cạnh còn lại của ΔDEF.
Xem lời giải tại:
20. Cho ΔABC có BC = 9 cm, AC = 6 cm, AB = 4 cm.  Gọi ha, hb, hc là chiều
cao tương ứng với các cạnh BC, AC, AB. Chứng minh ΔABC đồng dạng với tam
giác có ba cạnh bằng ha, hb, hc.
Xem lời giải tại:
21. Cho ΔABC có ba đường trung tuyến cắt nhau tại O. Gọi P, Q, R, D, H, K theo
thứ tự là trung điểm của các đoạn thẳng OA, OB, OC, AB, AC, BC.
a.  Chứng minh ΔKHD ∼ ΔPQR, tìm tỉ số đồng dạng.
b.  Tính chu vi ΔPQR, ΔABC, biết chu vi ΔKHD bằng 100 cm.
Xem lời giải tại:
22. Cho điểm H nằm trong ΔABC. Gọi K, M, N theo thứ tự là trung điểm của các
đoạn thẳng AH, BH, CH. Gọi D, E, F theo thứ tự là trung điểm của các đoạn thẳng
KM, KN, MN.
a.  Chứng minh ΔFED ∼ ΔABC, tìm tỉ số đồng dạng?
b.  Biết nửa chu vi của ΔABC là 12 cm. Tính chu vi ΔFED.
Xem lời giải tại:
23. Cho ΔABC có AB :BC :AC = 2: 5 : 4. Biết ΔDEF ∼ ΔABC và chu vi của ΔDEF
là 55 cm. Tính các cạnh của ΔDEF.
Xem lời giải tại:
TRƯỜNG HỢP ĐỒNG DẠNG CẠNH ‐ GÓC ‐ CẠNH
24. Cho ΔABC có AB = 12 cm, AC = 15 cm, BC = 18 cm. Trên cạnh AB lấy điểm M
sao cho AM = 10 cm, trên cạnh AC lấy điểm N sao cho AN = 8 cm. Tính độ dài
MN.
Xem lời giải tại:
25. Cho hình thang ABCD (AB / /CD) có AB = 4 cm, CD = 16 cm, BD = 8 cm.
a.  Biết 
^
BAD = 1300, tính 
^
DBC = ?
b.  Tính tỉ số 
AD
BC
= ? .
Xem lời giải tại:
26. Cho ΔABCcó AB = 4 cm. Điểm D thuộc cạnh AC sao cho AD = 2 cm, DC = 6
cm. 
Biết 
^
ACB = 200, tính 
^
ABD?
Xem lời giải tại:
27. Cho hình thang vuông ABCD (Aˆ = Dˆ = 900), AB = 4 cm, BD = 6 cm, CD = 9
cm.
Tính độ dài BC.
Xem lời giải tại:
28. Cho hình bình hành ABCD, Aˆ > 900, các đường cao AH, AK (
H ∈ CD; K ∈ BC).
So sánh 
^
AKH và 
^
ACH.
Xem lời giải tại:
29. Cho ΔABC, AB = 4 cm, BC = 5 cm, AC = 6 cm. Tính tỉ số 
Bˆ
Cˆ
.
Xem lời giải tại:
30. Cho hình thoi ABCD có Aˆ = 600. Qua C kẻ đường thẳng d cắt các tia đối của
các tia BA, DA theo thứ tự ở E, F. Goi I là giao điểm của DE và BF.
a.  So sánh 
EB
BA
 và 
AD
DF
 .
b.  Chứng minh ΔEBD ∼ ΔBDF.
c.  Tính 
^
BID = ? .
Xem lời giải tại:
31. Cho hình thang vuông ABCD (Aˆ = Dˆ = 900), AB = 10 cm, CD = 30 cm, AD =
35 cm. 
Điểm E nằm trên cạnh AD sao cho AE = 15 cm. Tính 
^
BEC?
Xem lời giải tại:
32. Cho hình bình hành ABCD, AC cắt BD tại O, AC = 2AB. Vẽ trung tuyến BE của 
ΔABO (E ∈ AO). Gọi M là trung điểm của BC.
a.  So sánh 
^
ABE và 
^
ACB.
b.  Chứng minh EM⊥BD.
Xem lời giải tại:
33. Cho ΔABC. Đường thẳng d / /BC cắt AB, AC lần lượt tại D, E sao cho 
DC2 = BC. DE.
a.  So sánh ΔDEC và ΔCDB.
b.  Nêu cách dựng DE.
Xem lời giải tại:
34. Cho ΔABC và G là điểm thuộc miền trong tam giác, tia AG cắt BC tại K và tia
CG cắt AB tại M. Biết rằng AG = 2GK; CG = 2GM. Chứng minh rằng G là trọng
tâm của ΔABC
Xem lời giải tại:
35. Cho hình thang ABCD (AB//CD). Biết 
AB = 9cm; BD = 12cm; CD = 16cm;
^
ADB = 450. Tính 
^
BCD ?
Xem lời giải tại:
36. Cho ΔABC và ΔDEF có Bˆ = Eˆ; BA = 2, 5DE; BC = 2, 5EF; AC + DF = 49cm.
Tính AC và DF.
Xem lời giải tại:
37. Cho góc xOy có tia phân giác Ot. Trên tia Ox lấy các điểm A và C’ sao cho 
OA = 4cm; OC ′ = 9cm. Trên tia Oy lấy các điểm A’ và C sao cho 
OA ′ = 12cm; OC = 3cm.  Trên tia Ot lấy các điểm B và B’ sao cho 
OB = 6cm; OB ′ = 18cm.
a.  Chứng minh rằng ΔOAB ∼ ΔOA ′B ′
b.  Tính các tỉ số 
AB
A ′B ′
;
BC
B ′C ′
;
AC
A ′C ′
Xem lời giải tại:
38. Trên một cạnh của một góc có đỉnh là O, đặt các đoạn thẳng 
OA = 5cm; OB = 16cm. Trên cạnh thứ hai của góc đó, đặt các đoạn thẳng 
OC = 8cm; OD = 10cm.
a.  Chứng minh rằng ΔOCB ∼ ΔOAD.
b.  Gọi giao điểm của các cạnh AD và BC là I. Chứng minh rằng AI. ID = IB. IC
Xem lời giải tại:
TRƯỜNG HỢP ĐỒNG DẠNG GÓC ‐ GÓC
39. Qua điểm O tùy ý ở trong tam giác ABC kẻ đường thẳng song song với AB,
cắt AC và BC ở D và E, đường thẳng song song với AC cắt AB và BC tại F và K,
đường thẳng song song với BC cắt AB và AC ở M và N.
Chứng minh rằng: 
AF
AB
+
BE
BC
+
CN
CA
= 1.
Xem lời giải tại:
40. Cho tam giác nhọn ABC, các đường cao BI và CK, điểm M thuộc cạnh BC. Gọi
D và E theo thứ tự là hình chiếu của M trên AB và AC. Gọi D' là hình chiếu của D
trên AC, E' là hình chiếu của E trên AB, H là giao điểm của DD' và EE'. Chứng
minh rằng ba điểm H, K ,I thẳng hàng.
Xem lời giải tại:
41. Cho tam giác ABC. Qua điểm O thuộc miền trong tam giác kẻ các đường
thẳng DE, FH, MK tương ứng song song với AB, BC, CA (H, K thuộc AB; M, E
thuộc BC; F, D thuộc AC). Gọi A' là giao điểm của AO với BC, B' là giao điểm của
BO với AC, C' là giao điểm của CO với AB. Chứng minh rằng:
FH
BC
+
MK
AC
+
DE
AB
= 2.
Xem lời giải tại:
42. Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Lấy điểm D thuộc cạnh
AC, điểm E thuộc cạnh AB sao cho 
^
ADE = Bˆ. Gọi G, H theo thứ tự là hình chiếu
của E, D trên BC. Tính tổng DE + EG + DH.
Xem lời giải tại:
43. Các đáy của một hình thang là a và b (a > b). Hãy xác định độ dài đoạn thẳng
song song với cạnh đáy của hình thang và chia hình thang thành hai phần có
diện tích bằng nhau.
Xem lời giải tại:
44. Giả sử AC là đường chéo lớn nhất trong hình bình hành ABCD. Từ C kẻ CE
vuông góc với AB (E thuộc đường thẳng AB) và CF vuông góc với AD (F thuộc
đường thẳng AD). Chứng minh rằng:
AB. AE + AD. AF = AC2
Xem lời giải tại:
45. Cho ΔABC có Aˆ = 900 và đường cao AH. Từ điểm H hạ đường HK⊥AC (hình
vẽ)
Hỏi trong hình đã cho có bao nhiêu tam giác đồng dạng với nhau.
Xem lời giải tại:
46. Hình thang ABCD (AB//CD) có 
AB = 2, 5cm; AD = 3, 5cm; BD = 5cm;
^
DAB =
^
DBC
a.  Chứng minh rằng ΔADB ∼ ΔBCD
b.  Tính độ dài các cạnh BC, CD
Xem lời giải tại:
47. Cho ΔABC, trên tia đối của tia AB lấy điểm D, trên tia đối của tia AC lấy điểm
E sao cho DE / /BC.
a.  Chứng minh rằng ΔADE ∼ ΔABC và viết tỷ số đồng dạng.
b.  Nếu BC = 3ED, AB = 6cm tính độ dài của BD.
Xem lời giải tại:
48. Cho ΔABC trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho 
^
ADE =
^
ACB. Chứng minh rằng:
a.  ΔADE ∼ ΔACB
b.  AD. AB = AE. AC
Xem lời giải tại:
49. Cho ΔABC có Aˆ = 900, dựng AH⊥BC (H ∈ BC). Đường phân giác BE cắt AH
tại F.
Chứng minh rằng 
FH
FA
=
EA
EC
.
Xem lời giải tại:
50. Tính độ dài x của đoạn thẳng BD trong hình vẽ biết rằng ABCD là hình thang,
AB // CD; AB = 12, 5 cm; CD = 28, 5 cm;
^
DAB =
^
DBC.
Xem lời giải tại:
51. Cho hình thang ABCD, (AB//CD). Gọi O là giao điểm của hai đường chéo AC
và BD.
a.  Chứng minh rằng: OA. OD = OB. OC
b.  Đường thẳng qua O vuông góc với AB và CD theo thứ tự tại H và K. Chứng
minh rằng 
OH
OK
=
AB
CD
Xem lời giải tại:
52. Cho ΔABC có cạnh AB = 24 cm; AC = 28 cm đường phân giác của góc Aˆ cắt
cạnh BC tại D. Gọi M, N theo thứ tự là hình chiếu của B và C trên đường thẳng
AD.
a.  Tính tỉ số 
BM
CN
b.  Chứng minh rằng 
AM
AN
=
DM
DN
Xem lời giải tại:
53. Cho ΔABC cân tại A, M là trung điểm của BC. Trên cạnh AB lấy điểm D, trên
cạnh AC lấy điểm E sao cho DM là tia phân giác của 
^
BDE. Chứng minh rằng 
BD. CE =
BC2
4
Xem lời giải tại:
54. Cho ΔABC và ΔA ′B ′C ′  biết Aˆ +
^
A ′ = 1800; Bˆ =
^
B ′ . Chứng minh rằng 
AB. A ′B ′ + AC. A ′C ′ = BC. B ′C ′
Xem lời giải tại:
55. Cho ΔABC có AB = c; BC = a; AC = b; Aˆ = 2Bˆ.  Chứng minh rằng 
a2 = b2 + bc
Xem lời giải tại:
CÁC TRƯỜNG HỢP ĐỒNG DẠNG CỦA TAM GIÁC VUÔNG
56. Cho ΔABC : Aˆ = 900; AC = 9 cm; BC = 24 cm. Đường trung trực của BC cắt
đường thẳng AC tại D, cắt BC tại M. Tính độ dài đoạn CD.
Xem lời giải tại:
57. Cho ΔABC; Aˆ = 900; AC = 4 cm; BC = 6 cm. Kẻ Cx⊥BC (tia Cx và điểm A
khác phía so với đường thẳng BC). Trên Cx lấy điểm D sao cho BD = 9 cm. Chứng
minh BD / /AC.
Xem lời giải tại:
58. Cho ΔABC có Aˆ = 900; AH⊥BC (H ∈ BC). Chứng minh AH2 = BH. CH.
Xem lời giải tại:
59. Cho ΔABC có Aˆ = 900; AH⊥BC (H ∈ BC); MB = MC (M ∈ BC). Tính diện
tích ΔAHM biết BH = 4 cm, CH = 9 cm.
Xem lời giải tại:
60. Cho ΔABH; Hˆ = 900 có AB = 20 cm, BH = 12 cm. Trên tia đối của tia HB lấy
điểm C sao cho 
AC
AH
=
5
3
.
a.  Chứng minh: ΔABH ∼ ΔCAH.
b.  Tính 
^
BAC?
Xem lời giải tại:
61. Cho ΔABC có  Aˆ = 900; AH⊥BC (H ∈ BC), AH = 8 cm, BC = 20 cm. Gọi D là
hình chiếu của H trên AC, E là hình chiếu của H trên AB.
a.  Chứng minh: ΔADE ∼ ΔABC.
b.  Tính SΔADE ?
Xem lời giải tại:
62. ΔABC có Cˆ = 900; CH⊥AB (H ∈ AB). Trên CH lấy điểm E, qua B kẻ 
BD⊥AE (D ∈ AE). Chứng minh rằng:
a.  AD. AE + BA. BH = AB2
b.  AD. AE − HA. HB = AH2
Xem lời giải tại:
63. Cho hình bình hành ABCD có AC là đường chéo lớn. Gọi E và F theo thứ tự là
hình chiếu của C trên AB và AD. Gọi H là hình hình chiếu của D trên AC. Chứng
minh rằng:
a.  AD. AF = AC. AH
b.  AD. AF + AB. AE = AC2
Xem lời giải tại:
64. Cho ΔABC. Qua D ∈ BC lần lượt kẻ DE / /AC (E ∈ AB); DF / /AB (F ∈ AC).
Biết SΔBED = 16 cm
2; SΔDFC = 25 cm
2. Tính SΔABC ?
Xem lời giải tại:
65. Cho ΔABC, ba trung tuyến AK, BN, CM cắt nhau tại O. Gọi A1; A2; A3 là ba
điểm lần lượt trên AK, BN, CM sao cho 
AA1 =
1
3
A1K; BB1 =
1
3
B1N; CC1 =
1
3
C1M.
Tính SΔA1B1C1 biết SΔABC = 128 cm
2.
Xem lời giải tại:
66. Cho ΔABC vuông ở A và có đường cao AH, BH = 9cm, CH = 16cm. Tính độ dài
các cạnh của ΔABC.
Xem lời giải tại:
67. Cho ΔABC vuông tại A, BC = 20cm; AB = 12cm, AH là đường cao (H ∈ BC).
Tính độ dài đoạn CH.
Xem lời giải tại:
68. Cho ΔABC vuông tại A, đường cao AH, gọi P là trung điểm của BH, Q là trung
điểm của AH. Chứng minh rằng:
a.  ΔABP ∼ ΔCAQ
b.  AP⊥CQ
Xem lời giải tại:
69. Cho ΔABC có Aˆ = 900; Cˆ = 300 và đường phân giác BD (D ∈ AC).
a.  Tính tỉ số 
AD
CD
b.  Cho biết độ dài AB = 12, 5cm, tính chu vi của ΔABC
c.  Gọi M là trung điểm của BC, chứng minh rằng ΔADB = ΔMDC
Xem lời giải tại:
70. Cho ΔABC, đường cao AH, kẻ HI⊥AB; HK⊥AC. Chứng minh rằng:
a.  AH2 = AI. AB
b.  ΔAIK ∼ ΔACB
c.  Đường phân giác của 
^
AHB cắt AB tại E. Biết 
EB
AB
=
2
5
.  Tính 
BI
AI
Xem lời giải tại:
71. Cho hình vuông ABCD. Trên cạnh AB lấy điểm M, kẻ BH⊥CM, nối DH, vẽ 
HN⊥DH(N ∈ BC). Chứng minh rằng:
a.  ΔDHC ∼ ΔNHB
b.  ΔMHB ∼ ΔBHC
c.  NB = MB
Xem lời giải tại:
72. Cho hình chữ nhật ABCD có AD = 6cm; AB = 8cm và hai đường chéo cắt
nhau tại O. Qua D kẻ đường thẳng d⊥DB , d cắt BC tại E.
a.  Chứng minh rằng: ΔBDE ∼ ΔDCE
b.  Kẻ CH⊥DE tại H, chứng minh DC2 = CH. DB
c.  Gọi K là giao điểm của OE và HC. Chứng minh K là trung điểm của HC.
d.  Tính tỷ số 
SEHC
SEDB
Xem lời giải tại:
73. Cho ΔABC vuông tại A có AH là đường cao, gọi D và E lần lượt là hình chiếu
vuông góc của H lên AB, AC.
a.  Chứng minh rằng ΔAED ∼ ΔABC
b.  Giả sử SABC = 2SADHE . Chứng minh rằng ΔABC vuông cân tại A.
Xem lời giải tại:
KIẾN THỨC NÂNG CAO
BÀI TẬP LIÊN QUAN
74. Cho ΔABC, BC = a, AC = b, 
^
ACB = 1200. Tính độ dài phân giác của 
^
ACB.
Xem lời giải tại:
75. Cho hình thang vuông ABCD (Aˆ = Bˆ = 900), AD = a, BC = b (a > b), AB = c.
Tính các khoảng cách từ giao điểm các đường chéo hình thang đến đáy AD và
cạnh bên AB.
Xem lời giải tại:
76. Cho hình thang ABCD (AB // CD, AB > CD), AC cắt BD tại F. Từ C vẽ CK // AD
(K ∈ AB), CK cắt BD tại L biết DF = BL. Tính 
AB
CD
Xem lời giải tại:
77. Cho tứ giác ABCD có E, F lần lượt là trung điểm của các cạnh AD, BC. Đường
thẳng EF cắt các đường thẳng AB, CD lần lượt tại M, N. Chứng minh 
MA. NC = MB. ND.
Xem lời giải tại:
78. Cho ΔABC có BC = a, AC = b, AB = c và a2 = bc. Gọi ha, hb, hc là chiều
cao tương ứng với các cạnh BC, AC, AB. Chứng minh ΔABC đồng dạng với tam
giác có ba cạnh bằng độ dài các đường cao của ΔABC.
Xem lời giải tại:
79. Cho ΔABC, Aˆ = 900 và ΔA ′B ′C ′ ,
^
A ′ = 900. Biết 
AB
A ′B ′
=
BC
B ′C ′
= k
a.  Tính 
AC
A ′C ′
b.  Chứng minh: ΔABC ∼ ΔA ′B ′C ′
c.  Tính tỉ số diện tích của ΔABC và ΔA ′B ′C ′ .
Xem lời giải tại:
80. Cho ΔABH, Hˆ = 900, AB = 20 cm, BH = 12 cm. Trên tia đối của tia HB lấy
điểm C sao cho AC =
5
3
AH.
a.  Chứng minh: ΔABH ∼ ΔCAH
b.  Tính 
^
BAC = ?
Xem lời giải tại:
81. Cho tứ giác ABCD có: 
^
BAD = 900,
^
CBD = 900, AB = 4 cm, BD = 6 cm, CD = 9 cm.
a.  Chứng minh ΔABD ∼ ΔBDC
b.  Tứ giác ABCD là hình thang vuông.
Xem lời giải tại:
82. Cho hình vuông ABCD. Trên các cạnh BA, BC đặt BP = BQ vẽ BH⊥CP. Chứng
minh rằng DH⊥HQ
Xem lời giải tại:
83. Cho ΔABC đều, gọi M là trung điểm của BC. Lấy điểm P trên cạnh AB và điểm
Q trên cạnh AC sao cho 
^
PMQ = 600. Chứng minh:
a.  ΔPBM ∼ ΔMCQ
b.  ΔMBP ∼ ΔQMP
c. 
SMPQ
SABC
=
PQ
2BC
Xem lời giải tại:
84. Cho ΔABC đều, O là trọng tâm của tam giác và điểm M ∈ BC, M không trùng
với trung điểm của BC. Kẻ MP và MQ lần lượt vuông góc với AB và AC, các đường
vuông góc này lần lượt cắt OB và OC taị I và K.
a.  Chứng minh rằng tứ giác MIOK là hình bình hành
b.  Gọi R là giao điểm của PQ và OM. Chứng minh R là trung điểm của PQ.
Xem lời giải tại:
85. Cho ΔABC cân tại đỉnh A và H là trung điểm của cạnh BC. Gọi I là hình chiếu
vuông góc của H lên cạnh AC và O là trung điểm của HI. Chứng minh rằng 
ΔBIC ∼ ΔAOH.
Xem lời giải tại:
86. Cho hình thang ABCD có (AB//CD), AB = m; CD = n(n > m), các điểm P, Q
lần lượt trên các cạnh AD, BC sao cho PQ / /AB / /CD; SABQP = SPQCD. Chứng
minh rằng: PQ2 =
m2 + n2
2
Xem lời giải tại:
87. Cho ΔABC, có trực tâm H, gọi M và N theo thứ tự là trung điểm của BC, AC.
Gọi O là giao điểm của các đường trung trực của ΔABC.
a.  Chứng minh rằng ΔOMN ∼ ΔHAB
b.  Tính tỉ số 
OM
AH
c.  Gọi G là trọng tâm của ΔABC. Chứng minh rằng ΔHAG ∼ ΔOMG
d.  Chứng minh ba điểm H, G, O thẳng hàng và GH = 2GO
Xem lời giải tại:
88. Cho ΔABC cân tại A, vẽ các đường cao BH, CK (H ∈ AC; K ∈ AB)
a.  Chứng minh BK = CH
b.  Chứng minh KH // BC
c.  Biết BC = a; AB = AC = b. Tính độ dài đoạn thẳng HK.
Xem lời giải tại:
89. Cho ΔABC vuông tại A, đường cao AH, AB = 15cm; AC = 20cm.
a.  Chứng minh rằng CA2 = CH. CB
b.  Kẻ AD là tia phân giác của 
^
BAC(D ∈ BC). Tính HD.
c.  Trên tia đối của tia AC lấy điểm I. Kẻ AK⊥BI tại K. Chứng minh rằng 
ΔBHK ∼ ΔBIC
d.  Cho AI = 8cm. Tính diện tích ΔBHK.
Xem lời giải tại:
90. Cho ΔABC vuông tại A, (AB < AC) và trung tuyến AD, kẻ đường thẳng vuông
góc với AD tại D lần lượt cắt AC tại E và AB tại F.
a.  Chứng minh ΔDCE ∼ ΔDFB
b.  Chứng minh AE. AC = AB. AF
c.  Đường cao AH của ΔABC cắt EF tại I. Chứng minh rằng 
SABC
SAEF
=
AD
AI
2
Xem lời giải tại:
91. Cho ΔABC vuông tại A (AB < AC), vẽ đường cao AH (H ∈ BC).
( )
a.  Chứng minh ΔABH ∼ ΔCBA
b.  Trên tia HC, lấy D sao cho HD = HA. Từ D vẽ đường thẳng song song với AH
cắt AC tại E. Chứng minh CE. CA = CD. CB
c.  Chứng minh AE = AB
d.  Gọi M là trung điểm của BE. Chứng minh AH. BM = AB. HM + AM. HB
Xem lời giải tại:
92. Cho ΔABC vuông tại A (AB > AC) kẻ đường cao AH.
a.  Chứng minh rằng: 
AB2
BH
=
AC2
CH
b.  Kẻ AD là tia phân giác của 
^
BAH(D ∈ BH). Chứng minh ΔACD cân và 
DH. DC = BD. HC
c.  Tính độ dài AH trong trường hợp SABH = 15, 36 cm
2 ; SACH = 8, 64 cm
2
d.  Gọi M là trung điểm của AB, E là giao điểm của hai đường thẳng MD và AH.
Chứng minh rằng: CE / /AD.
Xem lời giải tại:
93. Cho tứ giác ABCD, điểm E ∈ AB, qua E kẻ đường thẳng song song với AC, cắt
BC ở F. Qua F kẻ đường thẳng song song với BD cắt CD tại G. Qua G kẻ đường
thẳng song song với AC cắt AD ở H.
a.  Tứ giác EFGH là hình gì?
b.  Để EFGH là hình chữ nhật thì tứ giác ABCD phải có điều kiện gì?
c.  Nếu EFGH là hình chữ nhật thì tính diện tích các tứ giác ABCD, EFGH biết 
AC = 45(cm); BD = 30(cm);
BE
BA
=
1
2
Xem lời giải tại:
94. Hình thang ABCD có AB // CD, đường cao bằng 12cm, AC⊥BD, BD = 15(cm).
a.  Qua B kẻ đường thẳng song song với AC, cắt DC ở E. Tính độ dài DE
b.  Tính diện tích hình thang ABCD.
( ) ( )
Xem lời giải tại:
95. Cho ΔABC vuông tại A (AB < AC), phân giác BD. Trên tia đối của tia AB lấy
điểm F sao cho 
^
ACF =
^
ABD . Gọi E là giao điểm của CF và BD.
a.  Chứng minh: ΔBEF ∼ ΔCAF
b.  Chứng minh: ΔBCF cân
c.  Đường thẳng qua E, song song với AC cắt BF tại K. 
Chứng minh: AC2 = 4KF. BK
Xem lời giải tại:
96. Cho ΔABC nhọn, các đường cao BD và CE cắt nhau ở H. Gọi K là hình chiếu
của H lên BC. Chứng minh rằng:
a.  BH. BD = BK. BC
b.  CH. CE = CK. CB
c.  BH. BD + CH. CE = BC2
d.  Chứng minh rằng ba điểm A, H, K thẳng hàng.
Xem lời giải tại:
97. Cho hình bình hành ABCD có  Aˆ < Bˆ . Gọi E là hình chiếu của C trên AB, K là
hình chiếu của C trên AD, H là hình chiếu của B trên AC. Chứng minh rằng:
a.  AB. AE = AC. AH
b.  BC. AK = AC. HC
c.  AB. AE + AD. AK = AC2
Xem lời giải tại:
98. Cho ΔABC vuông tại A, đường cao AH, BC = 20(cm); AH = 8(cm). Gọi D là
hình chiếu của H trên AC, E là hình chiếu của H trên AB.
a.  Tứ giác ADHE là hình gì?
b.  Chứng minh rằng ΔADE ∼ ΔABC
( )
c.  Tính diện tích ΔADE.
Xem lời giải tại:
99. Cho ΔABC vuông tại A, AB = 6cm; AC = 8cm; đường cao AH.
a.  Chứng minh AB2 = BC. BH
b.  Tính AH
c.  Tia phân giác của 
^
AHC cắt cạnh AC tại D. Tính diện tích ΔDHC
Xem lời giải tại:
100. Cho ΔABC và một điểm D trên cạnh AB. Đường thẳng đi qua D và song
song với BC cắt AC tại E và cắt đường thẳng qua C song song với AB tại G. Nối BG
cắt AC tại H; qua H kẻ đường thẳng song song với AB cắt BC tại I. Chứng minh
rằng:
a.  DA. EG = DB. DE
b.  HC2 = HE. HA
c. 
1
HI
=
1
BA
+
1
CG
Xem lời giải tại:
101. Cho hình vuông ABCD và một điểm E bất kỳ trên cạnh BC. Kẻ tia Ax vuông
góc với AE cắt CD tại F. Kẻ trung tuyến AI của ΔAEF và kéo dài cắt CD tại K. Qua
E kẻ đường thẳng song song với AB cắt AI tại G. Chứng minh rằng:
a.  AE = AF
b.  Tứ giác EGFK là hình thoi.
c.  ΔFIK ∼ ΔFCE
d.  EK = BE + DK. Khi E chuyển động trên BC thì chu vi ΔECK không đổi.
Xem lời giải tại:
102. Cho ΔABC có các đường cao BK và CI cắt nhau tại H. Các đường thẳng kẻ từ
B vuông góc với AB và kẻ từ C vuông góc với AC cắt nhau tại D. Chứng minh
rằng:
a.  BHCD là hình bình hành.
b.  AI.AB = AK.AC
c.  ΔAIK và ΔACB đồng dạng.
d.  ΔABC cần có thêm điều kiện gì để đường thẳng DH đi qua A. Khi đó tứ giác
BHCD là hình gì?
Xem lời giải tại:
103. Cho tứ giác ABCD có AB = 4cm; BC = 20cm; CD = 25cm; DA = 8cm, đường
chéo BD = 10cm.
a.  Các tam giác ABD và BDC có đồng dạng với nhau không ? Vì sao ?
b.  Chứng minh tứ giác ABCD là hình thang.
c.  Tí

File đính kèm:

  • pdfKIEN_THUC_CO_BAN_VA_NANG_CAO_VE_TAM_GIAC_DONG_DANG.pdf
Giáo án liên quan