Một trăm bài tập Hình học lớp 9
Bài 80:
Cho tam giác ABC có 3 góc nhọn nội tiếp trong đường tròn tâm O. Ba đường cao AK; BE; CD cắt nhau ở H.
1/Chứng minh tứ giác BDEC nội tiếp.
2/Chứng minh :AD.AB=AE.AC.
3/Chứng tỏ AK là phân giác của góc DKE.
4/Gọi I; J là trung điểm BC và DE. Chứng minh: OA//JI.
trên đoạn thẳng cố định. 1/c/m:OMNP nội tiếp:(Sử dụng hai điểm M;N cùng làm với hai đầu đoạn OP một góc vuông. 2/C/m:CMPO là hình bình hành: Ta có: CD^AB;MP^ABÞCO//MP.u C K A O M B N D P y Hình 67 554 Do OPNM nội tiếpÞOPM=ONM(cùng chắn cung OM). DOCN cân ở O ÞONM=OCMÞOCM=OPM. Gọi giao điểm của MP với (O) là K.Ta có PMN=KMC(đ đ) ÞOCM=CMK ÞCMK=OPMÞCM//OPv.Từ u và v ÞCMPO là hình bình hành. 3/Xét hai tam giác OCM và NCD có:CND=1v(góc nt chắn nửa đtròn) ÞNCD là tam giác vuông.ÞHai tam giác vuông COM và CND có góc C chung. ÞDOCM~DNCDÞCM.CN=OC.CDw Từ w ta có CD=2R;OC=R.Vậyw trở thành:CM.CN=2R2 không đổi.vậy tích CM.CN không phụ thuộc vào vị trí của vị trí của M. 4/Do COPM là hình bình hànhÞMP//=OC=RÞKhi M di động trên AB thì P di động trên đường thẳng xy thoả mãn xy//AB và cách AB một khoảng bằng R không đổi. ÐÏ(&(ÐÏ Bài 68: Cho DABC có A=1v và AB>AC, đường cao AH. Trên nửa mặt phẳng bờ BC chứa điểm A vẽ hai nửa đường tròn đường kính BH và nửa đường tròn đường kính HC. Hai nửa đường tròn này cắt AB và AC tại E và F. Giao điểm của FE và AH là O. Chứng minh: AFHE là hình chữ nhật. BEFC nội tiếp AE. AB=AF. AC FE là tiếp tuyến chung của hai nửa đường tròn. Chứng tỏ:BH. HC=4. OE.OF. Hình 68 554 A E O F B I H K C 1/ C/m: AFHE là hình chữ nhật. BEH=HCF(góc nt chắn nửa đtròn); EAF=1v(gt) Þđpcm. 2/ C/m: BEFC nội tiếp: Do AFHE là hình chữ nhật.ÞDOAE cân ở O ÞAEO=OAE. Mà OAE=FCH(cùng phụ với góc B)ÞAEF=ACB mà AEF+BEF=2vÞBEF+BCE=2vÞđpcm 3/ C/m: AE.AB=AF.AC: Xét hai tam giác vuông AEF và ACB có AEF=ACB(cmt) ÞDAEF~DACBÞđpcm 4/ Gọi I và K là tâm đường tròn đường kính BH và CH.Ta phải c/m FE^IE và FE^KF. -Ta có O là giao điểm hai đường chéo AC và DB của hcnhật AFHEÞEO=HO; IH=IK cùng bán kính); AO chungÞ DIHO=DIEO ÞIHO=IEO mà IHO=1v (gt)Þ IEO=1vÞ IE^OE tại diểm E nằm trên đường tròn. Þđpcm. Chứng minh tương tự ta có FE là tt của đường tròn đường kính HC. 5/ Chứng tỏ:BH.HC=4.OE.OF. Do DABC vuông ở A có AH là đường cao. Aùp dụng hệ thức lượng trong tam giác vuông ABC có:AH2=BH.HC. Mà AH=EF và AH=2.OE=2.OF(t/c đường chéo hình chữ nhật)Þ BH.HC = AH2=(2.OE)2=4.OE.OF Bài 69: Cho DABC có A=1v AH^BC.Gọi O là tâm đường tròn ngoại tiếp tam giác ABC;d là tiếp tuyến của đường tròn tại điểm A.Các tiếp tuyến tại B và C cắt d theo thứ tự ở D và E. Tính góc DOE. Chứng tỏ DE=BD+CE. Chứng minh:DB.CE=R2.(R là bán kính của đường tròn tâm O) C/m:BC là tiếp tuyến của đtròn đường kính DE. E I A Hình 69 554 D 2 4 1 2 3 1 H O C B 1/Tính góc DOE: ta có D1=D2 (t/c tiếp tuyến cắt nhau);OD chungÞHai tam giác vuông DOB bằng DOAÞO1=O2.Tương tự O3=O4.ÞO1+O4=O2+O3. Ta lại có O1+O2+O3+O4=2vÞ O1+O4=O2+O3=1v hay DOC=90o. 2/Do DA=DB;AE=CE(tính chất hai tt cắt nhau) và DE=DA+AE ÞDE=DB+CE. 3/Do DDE vuông ở O(cmt) và OA^DE(t/c tiếp tuyến).Aùp dụng hệ thức lượng trong tam giác vuông DOE có :OA2=AD.AE.Mà AD=DB;AE=CE;OA=R(gt) ÞR2=AD.AE. 4/Vì DB và EC là tiếp tuyến của (O)ÞDB^BC và DE^BCÞBD//EC.Hay BDEC là hình thang. Gọi I là trung điểm DEÞI là tâm đường tròn ngoại tiếp DDOE.Mà O là trung điểm BCÞOI là đường trung bình của hình thang BDECÞOI//BD. Ta lại có BD^BCÞOI^BC tại O nằm trên đường tròn tâm IÞBC là tiếp tuyến của đường tròn ngoại tiếp DDOE. ÐÏ(&(ÐÏ Bài 70: Cho DABC(A=1v); đường cao AH.Vẽ đường tròn tâm A bán kính AH.Gọi HD là đường kính của đường tròn (A;AH).Tiếp tuyến của đường tròn tại D cắt CA tại E. Chứng minh DBEC cân. Gọi I là hình chiếu của A trên BE.C/m:AI=AH. C/m:BE là tiếp tuyến của đường tròn C/m:BE=BH+DE. Gọi đường tròn đường kính AH có Tâm là K.Và AH=2R.Tính diện tích của hình được tạo bởi đường tròn tâm A và tâm K. D E Hình 70 554 I A K C H B 1/C/m:DBEC cân:.Xét hai tam giác vuông ACH và AED có:AH=AD(bán kính);CAH=DAE(đ đ).Do DE là tiếp tuyến của (A)ÞHD^DE và DH^CB gt)ÞDE//CHÞDEC=ECHÞDACH=DAEDÞCA=AEÞA là trung điểm CE có BA^CEÞBA là đường trung trực của CEÞDBCE cân ở B. 2/C/m:AI=AH. Xét hai tam giác vuông AHB và AIB(vuông ở H và I) có AB chung và BA là đường trung trực của Dcân BCE(cmt) ÞABI=ABH ÞDAHB=DAIB ÞAI=AH. 3/C/m:BE là tiếp tuyến của (A;AH).Do AH=AIÞI nằm trên đường tròn (A;AH) mà BI^AI tại IÞBI là tiếp tuyến của (A;AH) 4/C/m:BE=BH+ED. Theo cmt có DE=CH và BH=BI;IE=DE(t/c hai tt cắt nhau).Mà BE=BI+IE Þđpcm. 5/Gọi S là diện tích cần tìm.Ta có: S=S(A)-S(K)=pAH2-pAK2=pR2- ÐÏ(&(ÐÏ Bài 71: Trên cạnh CD của hình vuông ABCD,lấy một điểm M bất kỳ.Đường tròn đường kính AM cắt AB tại điểm thứ hai Q và cắt đường tròn đường kính CD tại điểm thứ hai N.Tia DN cắt cạnh BC tại P. C/m:Q;N;C thẳng hàng. CP.CB=CN.CQ. C/m AC và MP cắt nhau tại 1 điểm nằm trên đường tròn đường kính AM. Hình 71 554 1/C/m:Q;N;C thẳng hàng: Gọi Tâm của đường tròn đường kính AM là O và đường tròn đường kính DC là I. -Do AQMD nội tiếp nên ADM+AMQ=2v Mà ADM=1v ÞAQM=1v và DAQ=1vÞAQMD là hình chữ nhật. ÞDQ là đường kính của (O) ÞQND=1v(góc nt chắn nửa đường tròn A Q B O P N H D I M C -Do DNC=1v(góc nt chắn nửa đtròn tâm I)ÞQND+DNC=2vÞđpcm. 2/C/m: CP.CB=CN.CQ.C/m hai tam giác vuông CPN và CBQ đồng dạng (có góc C chung) 3/Gọi H là giao điểm của AC với MP.Ta phải chứng minh H nằm trên đường tròn tâm O,đường kính AM. -Do QBCM là hcnhậtÞDMQC=DBQC. Xét hai tam giác vuông BQC và CDP có:QCB=PDC(cùng bằng góc MQC); DC=BC(cạnh hình vuông)ÞDBQC=DCDPÞDCDP=DMQCÞPC=MC.Mà C=1vÞDPMC vuông cân ở CÞMPC=45o và DBC=45o(tính chất hình vuông) ÞMP//DB.Do AC^DBÞMP^AC tại HÞAHM=1vÞH nằm trên đường tròn tâm O đường kính AM. ÐÏ(&(ÐÏ Bài 72: Cho DABC nội tiếp trong đường tròn tâm O.D và E theo thứ tự là điểm chính giữa các cung AB;AC.Gọi giao điểm DE với AB;AC theo thứ tự là H và K. C/m:DAHK cân. Gọi I là giao điểm của BE với CD.C/m:AI^DE C/m CEKI nội tiếp. C/m:IK//AB. DABC phải có thêm điều kiện gì để AI//EC. 1/C/m:DAKH cân: sđ AHK=sđ(DB+AE) sđ AKD=sđ(AD+EC) (Góc có đỉnh nằm trong đường tròn) Mà Cung AD+DB; AE=EC(gt) ÞAHK=AKDÞđpcm. A E D H K I ·O B C Hình 72 554 2/c/m:AI^DE Do cung AE=ECÞABE=EBC(góc nt chắn các cung bằng nhau)ÞBE là phân giác của góc ABC.Tương tự CD là phân giác của góc ACB.Mà BE cắt CD ở IÞI là giao điểm của 3 đường phân giác của DAHKÞAI là phân giác tứ 3 mà DAHK cân ở AÞAI^DE. 3/C/m CEKI nội tiếp: Ta có DEB=ACD(góc nt chắn các cung AD=DB) hay KEI=KCIÞđpcm. 4/C/m IK//AB Do KICE nội tiếpÞIKC=IEC(cùng chắn cung IC).Mà IEC=BEC=BAC(cùng chắn cung BC)ÞBAC=IKCÞIK//AB. 5/DABC phải có thêm điều kiện gì để AI//EC: Nếu AI//EC thì EC^DE (vì AI^DE)ÞDEC=1vÞDC là đường kính của (O) mà DC là phân giác của ACB(cmt)ÞDABC cân ở C. ÐÏ(&(ÐÏ Bài 73: Cho DABC(AB=AC) nội tiếp trong (O),kẻ dây cung AA’ và từ C kẻ đường vuông góc CD với AA’,đường này cắt BA’ tại E. C/m góc DA’C=DA’E C/m DA’DC=DA’DE Chứng tỏ AC=AE.Khi AA’ quay xung quanh A thì E chạy trên đường nào? C/m BAC=2.CEB 1/C/m DA’C=DA’E Ta có DA’E=AA’B (đđ Và sđAA’B=sđAB CA’D=A’AC+A’CA (góc ngoài DAA’C) Mà sđ A’AC=sđA’C SđA’CA=sđAC Hình 73 554 A E O A’ D B C ÞsđCA’D=sđ(A’C+AC)= sđ AC.Do dây AB=ACÞCung AB=AC ÞDA’C=DA’E. 2/C/m DA’DC=DA’DE. Ta có CA’D=EA’D(cmt);A’D chung; A’DC=A’DE=1vÞđpcm. 3/Khi AA’ quay xunh quanh A thì E chạy trên đường nào? Do DA’DC=DA’DEÞDC=DEÞAD là đường trung trực của CE ÞAE=AC=ABÞKhi AA’ quay xung quanh A thì E chạy trên đường tròn tâm A;bán kính AC. 4/C/m BAC=2.CEB Do DA’CE cân ở A’ÞA’CE=A’EC.Mà BA’C=A’EC+A’CE=2.A’EC(góc ngoài DA’EC). Ta lại có BAC=BA’C(cùng chắn cung BC)ÞBAC=2.BEC. ÐÏ(&(ÐÏ Bài 74: Cho DABC nội tiếp trong nửa đường tròn đường kính AB.O là trung điểm AB;M là điểm chính giữa cung AC.H là giao điểm OM với AC> C/m:OM//BC. Từ C kẻ tia song song và cung chiều với tia BM,tia này cắt đường thẳng OM tại D.Cmr:MBCD là hình bình hành. Tia AM cắt CD tại K.Đường thẳng KH cắt AB ở P.Cmr:KP^AB. C/m:AP.AB=AC.AH. Gọi I là giao điểm của KB với (O).Q là giao điểm của KP với AI. C/m A;Q;I thẳng hàng. Hình 74 554 D K C I M Q H A P O B 1/C/m:OM//BC. Cung AM=MC(gt)ÞCOM=MOA(góc ở tâm bằng sđ cung bị chắn).Mà DAOC cân ở OÞOM là đường trung trực của DAOCÞOM^AC.MàBC^AC(góc nt chắn nửa đường tròn)Þđpcm. 2/C/m BMCD là hình bình hành:Vì OM//BC hay MD//BC(cmt) và CD//MB (gt) Þđpcm. 3/C/ KP^AB.Do MH^AC(cmt) và AM^MB(góc nt chắn nửa đtròn); MB//CD(gt)ÞAK^CD hay MKC=1vÞMKCH nội tiếpÞMKH=MCH(cùng chắn cung MH).Mà MCA=MAC(hai góc nt chắn hai cung MC=AM) ÞHAK=HKAÞDMKA cân ở HÞM là trung điểm AK.Do DAMB vuông ở M ÞKAP+MBA=1v.mà MBA=MCA(cùng chắn cung AM)ÞMBA=MKH hay KAP+AKP=1vÞKP^AB. 4/Hãy xét hai tam giác vuông APH và ABC đồng dạng(Góc A chung) 5/Sử dụng Q là trực tâm cuỉa DAKB. ÐÏ(&(ÐÏ Bài 75: Cho nửa đường tròn tâm O đường kính EF.Từ O vẽ tia Ot^ EF, nó cắt nửa đường tròn (O) tại I. Trên tia Ot lấy điểm A sao cho IA=IO.Từ A kẻ hai tiếp tuyến AP và AQ với nửa đường tròn;chúng cắt đường thẳng EF tại B và C (P;Q là các tiếp điểm). 1.Cmr DABC là tam giác đều và tứ giác BPQC nội tiếp. 2.Từ S là điểm tuỳ ý trên cung PQ.vẽ tiếp tuyến với nửa đường tròn;tiếp tuyến này cắt AP tại H,cắt AC tại K.Tính sđ độ của góc HOK 3.Gọi M; N lần lượt là giao điểm của PQ với OH; OK. Cm OMKQ nội tiếp. 4.Chứng minh rằng ba đường thẳng HN; KM; OS đồng quy tại điểm D, và D cũng nằm trên đường tròn ngoại tiếp DHOK. A K H S I D P M N Q B E O F C Hình 75 554 1/Cm DABC là tam giác đều:Vì AB và AC là hai tt cắt nhau ÞCác DAPO; AQO là các tam giác vuông ở P và Q.Vì IA=IO(gt)ÞPI là trung tuyến của tam gíac vuông AOPÞPI=IO.Mà IO=PO(bán kính)ÞPO=IO=PIÞDPIO là tam giác đềuÞPOI=60o.ÞOAB=30o.Tương tự OAC=30oÞBAC=60o.Mà DABC cân ở A(Vì đường caoAO cũng là phân giác) có 1 góc bằng 60o ÞABC là tam giác đều. 2/Ta có Góc HOP=SOH;Góc SOK=KOC (tính chất hai tt cắt nhau) ÞGóc HOK=SOH+SOK=HOP+KOQ.Ta lại có: POQ=POH+SOH+SOK+KOQ=180o-60o=120oÞHOK=60o. 3/ Bài 76: Cho hình thang ABCD nội tiếp trong (O),các đường chéo AC và BD cắt nhau ở E.Các cạnh bên AD;BC kéo dài cắt nhau ở F. C/m:ABCD là thang cân. Chứng tỏ FD.FA=FB.FC. C/m:Góc AED=AOD. C/m AOCF nội tiếp. F Hình 76 554 1/ C/m ABCD là hình thang cân: Do ABCD là hình thang ÞAB//CDÞBAC=ACD (so le).Mà BAC=BDC(cùng chắn cung BC)ÞBDC=ACD Ta lại có ADB=ACB(cùng chắn cung AB)ÞADC=BCD Vậy ABCD là hình thang cân. 2/c/m FD.FA=FB.FC C/m Hai tam giác FDB và A B E D C O DFCA đồng dạng vì Góc F chung và FDB=FCA(cmt) 3/C/m AED=AOD: ·C/m F;O;E thẳng hàng: Vì DDOC cân ở OÞO nằm trên đường trung trực của Dc.Do ACD=BDC(cmt)ÞDEDC cân ở EÞE nằm tren đường trung trực của DC.Vì ABCD là thang cân ÞDFDC cân ở FÞF nằm trên đường trung trực của DCÞF;E;O thẳng hàng. ·C/m AED=AOD. Ta có:Sđ AED=sđ(AD+BC)= .2sđAD=sđAD vì cung AD=BC(cmt) Mà sđAOD=sđAD(góc ở tâm chắn cung AD)ÞAOD=AED. 4/Cm: AOCF nội tiếp: + Sđ AFC= sđ(DmC-AB) Sđ AOC=SđAB+sđ BC Sđ (AFC+AOC) =sđ DmC-sđAB+sđAB+sđBCu. Mà sđ DmC=360o-AD-AB-BCv.Từuvà vÞsđ AFC+sđ AOC=180o.Þđpcm ÐÏ(&(ÐÏBài 77: Cho (O) và đường thẳng xy không cắt đường tròn.Kẻ OA^xy rồi từ A dựng đường thẳng ABC cắt (O) tại B và C.Tiếp tuyến tại B và C của (O) cắt xy tại D và E.Đường thẳng BD cắt OA;CE lần lượt ở F và M;OE cắt AC ở N. C/m OBAD nội tiếp. Cmr: AB.EN=AF.EC So sánh góc AOD và COM. Chứng tỏ A là trung điểm DE. x M E C N O B A F Hình 77 554 D 1/C/m OBAD nt: -Do DB là ttÞOBD=1v;OA^xy(gt)ÞOAD=1vÞđpcm. 2/Xét hai tam giác:ABF và ECN có: -ABF=NBM(đ đ);Vì BM và CM là hai tt cắt nhauÞNBM=ECBÞFBA=ECN. -Do OCE+OAE=2vÞOCEA nội tiếpÞCEO=CAO(cùng chắn cung OC) ÞDABF~DECNÞđpcm. 3/So sánh;AOD với COM:Ta có: -DĐoABO ntÞDOA=DBA(cùng chắn cung ).DBA=CBM(đ đ) CBM=MCB(t/c hai tt cắt nhau).Do BMCO ntÞBCM=BOMÞDOA=COM. 4/Chứng tỏ A là trung điểm DE: Do OCE=OAE=1vÞOAEC ntÞACE=AOE(cùng chắn cung AE) ÞDOA=AOEÞOA là phân giác của góc DOE.Mà OA^DEÞOA là đường trung trực của DEÞđpcm ÐÏ(&(ÐÏ Bài 78: Cho (O;R) và A là một điểm ở ngoài đường tròn.Kẻ tiếp tuyến AB và AC với đường tròn. OB kéo dài cắt AC ở D và cắt đường tròn ở E. 1/ Chứng tỏ EC // với OA. 2/ Chứng minh rằng: 2AB.R=AO.CB. 3/ Gọi M là một điểm di động trên cung nhỏ BC, qua M dựng một tiếp tuyến với đường tròn, tiếp tuyến này cắt AB vàAC lần lượt ở I,J .Chứng tỏ chu vi tam giác AI J không đổi khi M di động trên cung nhỏ BC. 4/ Xác định vị trí của M trên cung nhỏ BC để 4 điểm J,I,B,C cùng nằm trên một đường tròn. Hình 78 554 D E C O J A M I B 1/C/m EC//OA:Ta có BCE=1v(góc nt chắn nửa đt) hay CE^BC.Mà OA là phân giác của Dcân ABCÞOA^BCÞOA//EC. 2/xét hai tam giác vuông AOB và ECB có: -Do OCA+OBA=2vÞABOC ntÞOBC=OAC(cùng chắn cung OC). mà OAC=OAB (tính chất hai tt cắt nhau)ÞEBC=BAOÞDBAO~DCBE Þ.Ta lại có BE=2RÞđpcm. 3/Chứng minh chu vi DAIJ không đổi khi M di động trên cung nhỏ BC. Gọi P là chu vi D AIJ .Ta có P=JI+IA+JA=MJ+MI+IA+JA. Theo tính chất hai tt cắt nhau ta có:MI=BI;MJ=JC;AB=AC ÞP=(IA+IB)+(JC+JA)=AB+AC=2AB không đổi. 4/Giả sử BCJI nội tiếpÞBCJ+BIJ=2v.MậI+JBI=2vÞJIA=ACB.Theo chứng minh trên có ACB=CBAÞCBA=JIA hay IJ//BC.Ta lại có BC^OAÞJI^OA Mà OM^JI ÞOMº OAÞM là điểm chính giữa cung BC. ÐÏ(&(ÐÏBài 79: Cho(O),từ điểm P nằm ngoài đường tròn,kẻ hai tiếp tuyến PA và PB với đường tròn.Trên đoạn thẳng AB lấy điểm M,qua M dựng đường thẳng vuông góc với OM,đường này cắt PA,PB lần lượt ở C và D. 1/Chứng minh A,C,M,O cùng nằm trên một đường tròn. 2/Chứng minh:COD=AOB. 3/Chứng minh:Tam giác COD cân. 4/Vẽ đường kính BK của đường tròn,hạ AH ^BK.Gọi I là giao điểm của AH với PK.Chứng minh AI=IH. C K A I Q H M O P Hình 79 554 D B 1/C/m ACMO nt: Ta có OAC=1v(tc tiếp tuyến).Và OMC=1v(vì OM^CD-gt) 2/C/m COD=AOB.Ta có: Do OMAC ntÞOCM=OAM(cùng chắn cung OM). Chứng minh tương tự ta có OMDB ntÞODM=MBO(cùng chắn cung OM) Hai tam giác OCD và OAB có hai cặp góc tương ứng bằng nhau ÞCặp góc còn lại bằng nhauÞCOD=AOB. 3/C/m DCOD cân: Theo chứng minh câu 2 ta lại có góc OAB=OBA(vì DOAB cân ở O) ÞOCD=ODCÞDOCD cân ở O. 4/Kéo dài KA cắt PB ở Q. Vì AH^BK; QB^BKÞAH//QB. Hay HI//PB và AI//PQ. Aùp dụng hệ quả định lý Talét trong các tam giác KBP và KQP có: u v w ÐÏ(&(ÐÏBài 80: Cho tam giác ABC có 3 góc nhọn nội tiếp trong đường tròn tâm O. Ba đường cao AK; BE; CD cắt nhau ở H. 1/Chứng minh tứ giác BDEC nội tiếp. 2/Chứng minh :AD.AB=AE.AC. 3/Chứng tỏ AK là phân giác của góc DKE. 4/Gọi I; J là trung điểm BC và DE. Chứng minh: OA//JI. A x J E Hình 80 554 D ·O H B K I C 1/C/m:BDEC nội tiếp: Ta có: BDC=BEC=1v(do CD;BE là đường cao)ÞHai điểm D và E cùng làm với hai đầu đoạn BCÞđpcm 2/c/m AD.AB=AE.AC. Xét hai tam giác ADE và ABC có Góc BAC chung . Do BDEC nt ÞEDB+ECB=2v.Mà ADE+EDB=2vÞADE=ACB ÞDADE~DACBÞđpcm. HKD=EKH 3/Do HKBD ntÞHKD=HBD(cùng chắn cung DH). Do BDEC ntÞHBD=DCE (cùng chắn cung DE) Dễ dàng c/m KHEC ntÞECH=EKH(cùng chắn cungHE) 4/C/m JI//AO. Từ A dựng tiếp tuyến Ax. xAC=AED Ta có sđ xAC=sđ cung AC (góc giữa tt và một dây) .Mà sđABC=sđ cung AC (góc nt và cung bị chắn) Ta lại có góc AED=ABC(cùng bù với góc DEC) Vậy Ax//DE.Mà AO^Ax(t/c tiếp tuyến)ÞAO^DE.Ta lại có do BDEC nt trong đường tròn tâm I ÞDE là dây cung có J là trung điểm ÞJI^DE(đường kính đi qua trung điểm của dây không đi qua tâm)Vậy IJ//AO ÐÏ(&(ÐÏ Bài 81: Cho tam giác ABC có 3 góc nhọn nội tiếp trong đường tròn tâm O.Tiếp tuyến tại B và C của đường tròn cắt nhau tại D.Từ D kẻ đường thẳng song song với AB,đường này cắt đường tròn ở E và F,cắt AC tại I(Enằm trên cung nhỏ BC) 1/Chứng minh BDCO nội tiếp. 2/Chứng minh:DC2=DE.DF 3/Chứng minh DOCI nội tiếp được trong đường tròn. 4/Chứng tỏ I là trung điểm EF. 1/C/m: BDCO nội tiếp Vì BD và DC là hai tiếp tuyến ÞOBD=OCD=1v ÞOBD+OCD=2v ÞBDCO nội tiếp. 2/Cm: :DC2=DE.DF Xét hai tam giác DCE và DCF có: D chung SđECD= sđ cung EC (góc giữa tiếp tuyến và một dây) A F O I B C E D Hình 81 554 Sđ DFC=sđ cung EC (góc nt và cung bị chắn)ÞEDC=DFC ÞDDCE~DDFC Þđpcm. 3/Cm: DCOI nội tiếp:Ta có sđ DIC=sđ(AF+EC). Vì FD//AD ÞCung AF=BE Þsđ DIC=sđ(BE+EC)= sđ cung BC Sđ BOC=sđ cung BC.Mà DOC=BOCÞsđ DOC=sđBCÞDOC=DIC ÞHai điểm O và I cùng làm với hai đầu đoạn thẳng DC những góc bằng nhau Þđpcm. 4/C/m I là trung điểm EF. Do DCIO nội tiếpÞDIO=DCO (cùng chắn cung DO).Mà DCO=1v(tính chất tiếp tuyến)ÞDIO=1v hay OI^FE.Đường kính OI vuông góc với dây cung FE nên phải đi qua trung điểm của FEÞđpcm. ÐÏ(&(ÐÏBài 82: Cho đường tròn tâm O,đường kính AB và dây CD vuông góc với AB tại F. Trên cung BC,lấy điểm M.AM cắt CD tại E. 1/Chứng minh AM là phân giác của góc CMD. 2/Chứng minh tứ giác EFBM nội tiếp được trong một đường tròn. 3/Chứng tỏ AC2=AE.AM 4/Gọi giao điểm của CB với AM là N;MD với AB là I.Chứng minh NI//CD. C M Hình 82 554 E N A O I B F D 1/C/m AM là phân giác của góc CMD: Ta có: Vì OA^CD và DCOD cân ở O ÞOA là phân giác của góc COD. Hay COA=AODÞcung AC=AD Þgóc CMA=AMD(hai góc nội tiếp chắn hai cung bằng nhau)Þđpcm. 2/cm EFBM nội tiếp: VìCD^AB(gt)ÞEFB=1v;và EMB=1v(góc nt chắn nửa đường tròn)Þ EFB+ EMB=2vÞđpcm. 3/Cm: AC2=AE.AM. Xét hai tam giác:ACM và ACE có A chung.Vì cung AD=ACÞhai góc ACD=AMC(hai góc nt chắn hai cung bằng nhau) ÞDACE~DAMCÞđpcm 4/Cm NI//CD: Vì cung AC=ADÞgóc AMD=CBA(hai góc nt chắn hai cung bằng nhau) Hay NMI=NBI ÞHai điểm M và B cung làm với hai đầu đoạn thẳng NI những góc bằng nhau ÞNIBM nội tiếp ÞGóc NIB+NMB=2v mà NMB=1v(cmt) ÞNIB=1v hay NI^AB.Mà CD^AB(gt)ÞNI//CD. ÐÏ(&(ÐÏ Bài 83: Cho DABC có A=1v;Kẻ AH^BC.Qua H dựng đường thẳng thứ nhất cắt cạnh AB ở E và cắt đường thẳng AC tại G.Đường thẳng thứ hai vuông góc với đường thẳng thứ nhất và cắt cạnh AC ở F,cắt đường thẳng AB tại D. C/m:AEHF nội tiếp. Chứng tỏ:HG.HA=HD.HC Chứng minh EF^DG và FHC=AFE. Tìm điều kiện của hai đường thẳng HE và HF để EF ngắn nhất. G A Hình 83 554 E F B H C D 1/Cm AEHF nội tiếp: Ta có BAC=1v(góc nt chắn nửa đtròn) FHE=1v Þ BAC+ FHE=2vÞđpcm. 2/Cm: HG.HA=HD.HC. Xét hai D vuông HAC và HGD có:BAH=ACH (cùng phụ với góc ABC).Ta lại có GAD=GHD=1vÞGAHD nội tiếp ÞDGH=DAH ( cùng chắn cung DH ÞDGH=HAC ÞDHCA~DHGDÞđpcm. 3/·C/m:EF^DG:Do GH^DF và DA^CG và AD cắt GH ở E ÞE là trực tâm của DCDGÞEF là đường cao thứ 3 của DCDGÞFE^DG. · C/m:FHC=AFE: Do AEHF nội tiếp ÞAFE=AHE(cùng chắn cung AE).Mà AHE+AHF=1v và AHF+FHC=1vÞAFE=FHC. 4/ Tìm điều kiện của hai đường thẳng HE và HF để EF ngắn nhất: Do AEHF nội tiếp trong đường tròn có tâm là trung điểm EF .Gọi I là tâm đường tròn ngoại tiêùp tứ giác AEHFÞIA=IHÞĐể EF ngắn nhất thì
File đính kèm:
- Cac_bai_Luyen_tap.doc