Giáo án Hình học (cơ bản) khối 10 - Tiết 40: Ôn tập chương III

Cho đường thẳng : x – y + 2 = 0 và điểm A(2; 0).

a) Tìm điểm A đối xứng của O qua .

b) Tìm điểm M sao cho độ dài đường gấp khúc OMA ngắn nhất

3. Lập phương trình hai đường phân giác của các góc tạo bởi hai đường thẳng:

 

doc3 trang | Chia sẻ: tuongvi | Lượt xem: 1525 | Lượt tải: 2download
Bạn đang xem nội dung tài liệu Giáo án Hình học (cơ bản) khối 10 - Tiết 40: Ôn tập chương III, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Ngày soạn: 20/04/2008	Chương III: PHƯƠNG PHÁP TOẠ ĐỘ TRONG MẶT PHẲNG 
Tiết dạy:	40	Bàøi dạy: ÔN TẬP CHƯƠNG III
I. MỤC TIÊU:
	Kiến thức: 	
Ôn tập toàn bộ kiến thức chương III.
	Kĩ năng: 
Vận dụng kiến thức đã học để giải toán.
	Thái độ: 
Rèn luyện tính cẩn thận, chính xác. 
II. CHUẨN BỊ:
	Giáo viên: Giáo án. Hệ thống bài tập.
	Học sinh: SGK, vở ghi. Ôn tập kiến thức chương III. 
III. HOẠT ĐỘNG DẠY HỌC:
	1. Ổn định tổ chức: Kiểm tra sĩ số lớp.
	2. Kiểm tra bài cũ: (Lồng vào quá trình luyện tập)
	H. 
	Đ
	3. Giảng bài mới:
TL
Hoạt động của Giáo viên
Hoạt động của Học sinh
Nội dung
Hoạt động 1: Luyện tập giải toán về đường thẳng 
20'
H1. Nhận xét về các đt AB, BC, AD ?
· GV hướng dẫn cách xác định điểm A¢.
H2. Xác định VTCP của D ?
H3. Nêu điều kiện xác định điểm H ?
H4. Khi nào OMA ngắn nhất ?
H5. Nêu tính chất đường phân giác ?
Đ1. 
· AB chứa A và AB // CD
Þ AB: x + 2y – 7 = 0
· BC chứa C và BC ^ CD
Þ BC: 2x – y + 6 = 0
· AD chứa A và AD ^ CD
Þ AD: 2x – y – 9 = 0
Đ2. = (1; 1)
Đ3. Þ A¢(–2; 2)
Đ4. M là giao điểm của AA¢ với D. Þ M(–2; 0)
Đ5. M Ỵ D Û d(M,d1) = d(M,d2)
Û 
1. Cho hình chữ nhật ABCD. Biết các đỉnh A(5; 1), C(0; 6) và phương trình CD: x + 2y – 12 = 0. Tìm phương trình các đường thẳng chứa các cạnh còn lại.
2. Cho đường thẳng D: x – y + 2 = 0 và điểm A(2; 0).
a) Tìm điểm A¢ đối xứng của O qua D.
b) Tìm điểm M Ỵ D sao cho độ dài đường gấp khúc OMA ngắn nhất.
3. Lập phương trình hai đường phân giác của các góc tạo bởi hai đường thẳng:
	d1: 3x – 4y + 12 = 0
	d2: 12x + 5y – 7 = 0
Hoạt động 2: Luyện tập giải toán về đường tròn 
10'
H1. Nêu cách xác định G, H
· GV hướng dẫn HS cách viết phương trình đường tròn đi qua 3 điểm.
H2. Nêu tính chất tâm đtròn ngoại tiếp tam giác ?
Đ1. 
· G: 
Þ 
· H: 
Þ Û 
Đ2. Û 
R = IA = 
Þ (C): (x + 5)2 + (y – 1)2 = 85
C2: 
(C): x2 + y2 – 2ax – 2by + c = 0
Thay lần lượt toạ độ 3 điểm A, B, C vào pt (C), ta được hệ pt:
Û 
4. Cho 3 điểm A(4; 3), B(2; 7), C(–3; –8).
a) Tìm toạ độ trọng tâm G và trực tâm H của DABC.
b) Viết phương trình đường tròn ngoại tiếp ABC.
Hoạt động 3: Luyện tập giải toán về đường elip
10'
H1. Nêu công thức xác định các yếu tố của (E) ?
Đ1. a = 4, b = 3, c = 
Þ 2a = 8, 2b = 6, 2c = 2
Tiêu điểm:F1(–;0), F2(;0)
Đỉnh: A1(–4; 0), A2(4; 0),
	B1(0; –3), B2(0; 3)
5. Cho (E): . Tìm các yếu tố của (E).
Hoạt động 4: Củng cố
3'
· Nhấn mạnh cách giải các dạng toán.
	4. BÀI TẬP VỀ NHÀ:
Bài tập cuối năm.
IV. RÚT KINH NGHIỆM, BỔ SUNG:

File đính kèm:

  • dochinh10cb40.doc