Giáo án Đại số 9 - GV: Lê Kiều Thu - Tiết 58: Luyện tập

HOẠT ĐỘNG CỦA THẦY

Hoạt động 1: (7’)

 GV cho 02 HS lên bảng

 GV hướng dẫn sưa sai cho HS

Hoạt động 1: (8’)

 x1 + x2 = ?

 x1.x2 = ?

 Hai số nào mà tổng bằng 7 và tích bằng 12?

 x1 + x2 = ?

 x1.x2 = ?

 Hai số nào mà tổng bằng –7 và tích bằng 12?

Hoạt động 2: (6’)

 Lập ’

 Khi nào thì phương trình có nghiệm?

GV cho HS nhắc lại công thức tính tổng và tích của hai nghiệm.

 

doc2 trang | Chia sẻ: dungnc89 | Lượt xem: 1143 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Giáo án Đại số 9 - GV: Lê Kiều Thu - Tiết 58: Luyện tập, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Ngày Soạn: 07 – 03 – 2015
Ngày dạy: 09 – 03 – 2015
Tuần: 28
Tiết: 58
LUYỆN TẬP §6
I. Mục Tiêu:
	1. Kiến thức:
	- Củng cố và khắc sâu cho HS hệ thức Viét.
	2. Kĩ năng:
- Rèn kĩ năng vận dụng hệ thức Viét để tìm nghiệm của phương trình bậc hai trong hai trường hợp đặc biệt và kĩ năng tìm hai số khi biết tổng và tích của chúng.
	3. Thái độ:
	- Phát huy tính tích cực, sáng tạo trong giải toán.
II. Chuẩn Bị:
- GV: SGK, bài tập.
- HS: Chuẩn bị bài tập trong SGK.
III. Phương pháp: Đặt và giải quyết vấn đề, vấn đáp, thảo luận.
IV. Tiến Trình:
1. Ổn định lớp: (1’)	9A1:/............................;9a2..............................................................
	2. Kiểm tra bài cũ: (5’)
 	- Phát biểu định lý Viét. Nêu 2 trường hợp đặc biệt. 
	3. Nội dung bài mới:
HOẠT ĐỘNG CỦA THẦY
HOẠT ĐỘNG CỦA TRÒ
GHI BẢNG
Hoạt động 1: (7’)
 GV cho 02 HS lên bảng
 GV hướng dẫn sưa sai cho HS
Hoạt động 1: (8’)
	x1 + x2 = ?
	x1.x2 = ?
	Hai số nào mà tổng bằng 7 và tích bằng 12?
	x1 + x2 = ?
	x1.x2 = ?
	Hai số nào mà tổng bằng –7 và tích bằng 12?
Hoạt động 2: (6’)
	Lập ’
	Khi nào thì phương trình có nghiệm? 
GV cho HS nhắc lại công thức tính tổng và tích của hai nghiệm.
	Cả lớp làm vào vở
 x1 + x2 = 7
	x1.x2 = 12
	Số 3 và 4.
	x1 + x2 = –7
	x1.x2 = 12
	Số –3 và –4.
	’ = 
	Để phương trình có nghiệm thì ’ 0 
HS giải bất phương trình và cho GV biết kết quả vừa tìm .
Bài 1: Dùng hệ thức Viét để nhẩm nghiệm của các phương trình sau:
a/ 2x2 + 5x + 3 = 0(1);
 b/ 3x2 + 8x - 11 = 0 (2) 
giải
(1) có dạng a - b + c = 0, nên có một nghiệm x1 = -1 và x2 = 
Phương trình (2) có dạng a + b + c = 0, nên có một nghiệm x1 = 1 và x2 = 
Bài 27: 
a) x2 – 7x + 12 = 0
Ta có:	
Suy ra:	x1 = 3; 	x2 = 4
b) x2 + 7x + 12 = 0
Ta có:	
Suy ra:	x1 = –3; 	x2 = –4
Bài 30: 
x2 – 2x + m = 0
Ta có: ’= 
Để phương trình có nghiệm thì ’ 0
1 – m 0 m 1
HOẠT ĐỘNG CỦA THẦY
HOẠT ĐỘNG CỦA TRÒ
GHI BẢNG
 Bài 2 GV hướng dẫn HS.
Hoạt động 2: (16’)
	2 số u và v là nghiệm của phương trình nào?
 Hãy giải phương trình trên để tìm hai số u và v.
 Hãy nhắc lại PT bậc 2 khi biết tổng tích hai nghiệm?
 HS nhắc lại và tính tổng tích sau đó trả lời.
	HS làm theo hướng dẫn của GV.
	u và v là nghiệm của phương trình:
x2 – 42x + 441 = 0
	HS giải phương trình
 HS nhắc lại và làm theo hướng dẫn của GV.
x1 + x2 = 2;	x1.x2 = m
Bài 2: Phương trình x2 – 7x + q = 0 có hiệu hai nghiệm bằng 11. Tìm q và hai nghiệm của phương trình
Giải: 
Vì vai trò của x1, x2 bình đẳng nên theo đề bài giả sử: x1 - x2 =11 và theo hệ thức Vi-ét: x1+ x2 = 7 ta có hệ phương trình sau: 
Suy ra: q = x1. x2 = 9.(-2)= -18 
Bài 32: Tìm hai số u và v biết:
a) u + v = 42;	uv = 441
Ta có: u và v là hai nghiệm của phương trình:
x2 – 42x + 441 = 0
’ = 
Phương trình có nghiệm kép:
x1 = x2 = 21
Vậy, u = v = 21.
Bài 3: Cho x1= 3; x2= 2. Hãy lập phương trình bậc hai chứa hai nghiệm trên
Giải: 
Theo hệ thức Vi-ét, ta có: 
Vậy x1; x2 là nghiệm của phương trình có dạng: 
 x2 – Sx + P = 0 
 x2 – 5x + 6 = 0
 	4. Củng Cố:
 	Xen vào lúc làm bài tập.
 	5. Dặn Dò: (2’)
 	- Về nhà xem lại các bài tập đã giải.
	- GV hướng dẫn HS làm bài tập 32b, c.
	6. Rút kinh nghiệm tiết dạy: 
	.................................................................................................................................................................................................................................................
	.................................................................................................................................................................................................................................................
	.................................................................................................................................................................................................................................................

File đính kèm:

  • docDS9T58.doc
Giáo án liên quan