Giáo án Đại số 8 - Tuần 8 - Trịnh Thị Dung
?1 Cho đơn thức 3 xy2
-Hãy viết đa thức có các hạng tử đều chia hết cho 3xy2
- Chia các hạng tử của đa thức đó cho 3xy2
- Cộng các kết quả vừa tìm được với nhau
G : Chia HS thành từng nhóm để thực hiện yêu cầu trên
H :( )
G : Ghi một ví dụ của nhóm nào làm đúng hoặc ghi ví dụ trong SGK
G : Đa thức 5xy3 + 4x2 – y là thương của phép chia đa thức 15 x2y5 + 12x3 y2 – 10xy3 đơn thức 3xy2
G : Đơn thức A chia hết cho đơn thức B khi mỗi biến của B đều là biến của A với số mũ không lớn hơn số mũ của nó trong A(?) Qua hai ví dụ trên hãy rút ra quy tắc chia 1 đơn thức cho 1 đơn thức
H :( )
G : Treo bảng phụ cho học sinh đọc quy tắc
1) Quy tắc :Muốn chia đơn thức A cho đơn thức B ( trường hợp A chia hết cho B) ta làm như sau ;
- Chia hệ số của đơn thức A cho hệ số của đơn thức B
- Chia luỹ thừa của từng biến trong A cho luỹ thừa của từng biến trong đó trong B
- Nhân các kết quả với nhau
Tuần 8 Ngày soạn : Tiết 15 Chia đơn thức cho đơn thức I/Mục tiêu : Học sinh hiểu được khái niệm đa thức A chia hết cho đa thức B Học sinh nắm vững khi nào đơn thức A chia hết cho đơn thức B Học sinh thực hiện thành thạo phép chia đơn thức cho đơn thức II/ Chuẩn bị Học sinh ôn lại định nghĩa phép chia hai luỹ thừa của cùng một cơ số : xm : xn = xm – n với m,n thuộc N ,m ³ n ,x ạ 0 ; xm chia hết cho xn Û m ³ n III/Tiến trình : 1- ổn định tổ chức 2- Kiểm tra (?) Viết công thức chia hai luỹ thừa cùng cơ số H :() Với x ạ 0 ,m,n ẻ N ,m ³ n thì xm : xn = xm – n nếu m > n , xm : xn = 1 nếu m = n (?) Nêu định nghĩa số A chia hết cho số B ,B ạ 0 H :() Ta nói số A chia hết cho số A nếu tìm được số Q sao cho sao cho A = B.Q . A được gọi là số bị chia ,B được gọi là số chia ,Q được gọi là thương .Kí hiệu Q = A : B hoặc Q = A /B G : Người ta định nghĩa phép chia hết một đa thức A cho một đa thức B một cách tương tự .Trên cơ sở định nghĩa trên em hãy phát biểu định nghĩa phép chia hết một đa thức cho một đa thức 3.Nội dung : Hoạt động của thày và trò Nội dung G : Trong bài này ,ta xét trường hợp đơn giản nhất của phép chia hai đa thức , đó là phép chia đơn thức cho đơn thức (?) Thực hiên ?1 SGK Làm tính chia a) x3 : x2 b) 15 x7 : 3 x2 c) 20x5 :12x H :() G : Sửa chữa a) x b) 5x5 c) 5/3x4 (?) Nhận xét gì về mối quan hệ của hệ số 5 trong thương 5x5 và hệ số 15 và 3 trong đơn thức 15 x7 và 3 x2 H :() 5 = 15 : 3 g : Tương tự các em hãy làm ? 2 SGK Giải : Tính 15 x2y2 : 5xy =(15 : 5)(x2 :x)(y2 : y) = 3 x y Tính 12 x3y : 9x2 = (12 : 9)(x3 : x2) y = 4/3xy (?) Qua hai Bài tập trên hãy cho biết điều kiện để 1 đơn thức A chia hết cho 1 đơn thức B H :() 1 Làm tính chia a) x3 : x2 b) 15 x7 : 3 x2 c) 20x5 :12x H :() 15 x7 : 3 x2 = (15 : 3)(x7 :x2) = 5 x5 ?2 Tính 15 x2y2 : 5xy2 Tính 12 x3y : 9x2 Nhận xét (SGK) 1 )Quy tắc :Muốn chia đơn thức A cho đơn thức B ( trường hợp A chia hết cho B) ta làm như sau ; Chia hệ số của đơn thức A cho hệ số của đơn thức B Chia luỹ thừa của từng biến trong A cho luỹ thừa của từng biến trong đó trong B Nhân các kết quả với nhau 2) áp dụng a)15x3y5z : 5x2y3 =(15:5)(x3 :x2)(y5 :y3)z = 3xy2z b)P = 12x4y2 : (-9xy2) = -4/3x3 = [12 : ( - 9)](x4 :x)(y2 :y2) = -4/3x3 = - 4/3(-3)3 =- 4/3.(- 27) = 36 5) Hướng dẫn về nhà Học thuộc quy tắc chia đơn thức cho đơn thức Làm các Bài tập trong sách bài tập IV/Rút kinh nghiệm Ngày soạn : Tiết 16 Chia đa thức cho đơn thức I/Mục tiêu : Qua bài này học sinh cần nắm được điều kiện để đa thức chia hết cho đơn thức .Nắm vững quy tắc chia đa thức cho đơn thức .Vận dụng tốt vào việc giải toán . II/ Chuẩn bị H : Ôn lại phép chia đơn thức cho đơn thức G : Soạn giáo án lên lớp III/Tiến trình : 1-ổn định tổ chức 2.Kiểm tra : Thực hiện phép chia các đơn thức 15 x2 y5 ; 12x3y2 ;– 10xy3 cho đơn thức 3x y2 H :() 3.Nội dung : Phương pháp Nội dung ?1 Cho đơn thức 3 xy2 -Hãy viết đa thức có các hạng tử đều chia hết cho 3xy2 - Chia các hạng tử của đa thức đó cho 3xy2 - Cộng các kết quả vừa tìm được với nhau G : Chia HS thành từng nhóm để thực hiện yêu cầu trên H :() G : Ghi một ví dụ của nhóm nào làm đúng hoặc ghi ví dụ trong SGK G : Đa thức 5xy3 + 4x2 – y là thương của phép chia đa thức 15 x2y5 + 12x3 y2 – 10xy3 đơn thức 3xy2 G : Đơn thức A chia hết cho đơn thức B khi mỗi biến của B đều là biến của A với số mũ không lớn hơn số mũ của nó trong A(?) Qua hai ví dụ trên hãy rút ra quy tắc chia 1 đơn thức cho 1 đơn thức H :() G : Treo bảng phụ cho học sinh đọc quy tắc Quy tắc :Muốn chia đơn thức A cho đơn thức B ( trường hợp A chia hết cho B) ta làm như sau ; Chia hệ số của đơn thức A cho hệ số của đơn thức B Chia luỹ thừa của từng biến trong A cho luỹ thừa của từng biến trong đó trong B Nhân các kết quả với nhau (?) 2 a)Tìm thương trong phép chia ,biết đơn thức bị chia là 15x3y5z ,đơn thức chia là 5x2y3 b)Cho P = 12x4y2 : (-9xy2) tính giá trị của biểu thức P tại x = - 3 và y = 1,005 H :() G : Trong tính toán ta có thể bỏ qua một bước trung gian để thực hiện tính nhẩm của phép chia hệ số cho hệ số và phép chia luỹ thừa của từng biến 4) Củng cố (?) Nhắc lại quy tắc chia 1 đơn thức cho 1 đơn thức Bài tập 60/27 a) x10 : ( -x)8 b)(-x)5 : (- x)3 c) (-y)5 : (- y)4 H :() Bài tập 61/27 1. Quy tắc : (15 x2y5 + 12x3 y2 – 10xy3) : 3xy2 = (15 x2y5 : 3xy2) +( 12x3y2: 3xy2) +(– 10xy2 : 3xy2) = 5xy3 + 4x2 – y Quy tắc : Muốn chia một đa thức A cho một đơn thức B ( trường hợp các hạng tử của đa thức A đều chia hết cho đơn thức B ),ta chia mỗi hạng tử của A cho B rồi cộng các kết quả với nhau Ví dụ : Thực hiện phép tính : (30x4y3 – 25 x2y3 – 3x4y4) : 5x2y3 5) Hướng dẫn về nhà : Làm bài tập 65 ,66 SGK các bài tập ở sách bài tập IV/Rút kinh nghiệm
File đính kèm:
- Tuan8.doc