Đề thi thử THPT Quốc gia môn Toán (Lần 1) - Mã đề 001 - Năm học 2018-2019 - Trường THPT Yên Lạc 2 (Có đáp án)

Câu 16. Cho hàm số y=(2x-3)/(x-2)(C). Gọi M là điểm bất kỳ trên (C), d là tổng khoảng cách từ M đến hai đường tiệm cận của đồ thị (C). Giá trị nhỏ nhất của d là

A. 10 .

B. 2 .

C. 5 .

D. 6 .

Câu 17. Trong các mệnh đề sau, mệnh đề nào sai?

A. Chỉ có năm loại khối đa diện đều.

B. Mỗi khối đa diện đều là một khối đa diện lồi.

C. Mỗi cạnh của hình đa diện là cạnh chung của đúng hai mặt.

D. Hình chóp tam giác đều là hình chóp có bốn mặt là các tam giác đều.

Câu 18. Cho khối chóp tứ giác đều có tất cả các cạnh bằng a. Thể tích khối chóp bằng

A. (a^3 √3)/2.

B. (a^3 √3)/4.

C. a^3/3.

D. (a^3 √2)/6.

Câu 19. Cho hàm số y=f(x) có đạo hàm f^' (x)=-x^2+5x-6,xR. Hàm số y=-5f(x) nghịch biến trên khoàng

A. (-∞;2) và (3;+∞)

B. (-∞;3)

C. (2;+∞)

D. (2;3)

 

pdf7 trang | Chia sẻ: Bình Đặng | Ngày: 09/03/2024 | Lượt xem: 120 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Đề thi thử THPT Quốc gia môn Toán (Lần 1) - Mã đề 001 - Năm học 2018-2019 - Trường THPT Yên Lạc 2 (Có đáp án), để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
 Trang 1/7 - Mã đề thi 001 
SỞ GD&ĐT VĨNH PHÚC 
TRƯỜNG THPT YÊN LẠC 2 
KỲ THI THỬ THPTQG LẦN I NĂM HỌC 2018-2019 
ĐỀ THI MÔN: Toán 
Thời gian làm bài: 90 phút, không kể thời gian phát đề 
ĐỀ CHÍNH THỨC Đề thi gồm: 07 trang 
Họ và tên thí sinh:.............................................................................. SBD:..................... 
Mã đề thi 
001 
Câu 1. Biết hàm số đạt cực tiểu tại điểm , và đồ thị của hàm số 
cắt trục tung tại điểm có tung độ bằng . Tính giá trị của hàm số tại . 
 A. . B. . C. . D. . 
Câu 2. Giá trị nhỏ nhất của hàm số trên đoạn là: 
 A. 0 B. 5 C. 7 D.3 
Câu 3. Cho hình chóp , gọi , lần lượt là trung điểm của . Tính tỉ số . 
 A. B. C. . D. . 
Câu 4. Cho hàm số bậc ba   3 2f x ax bx cx d     , , , , 0a b c d a  có đồ thị như hình vẽ bên. 
Mệnh đề nào sau đây đúng?
 A. 0, 0, 0, 0a b c d    B. 0, 0, 0, 0a b c d    
 C. 0, 0, 0, 0a b c d    . D. 0, 0, 0, 0a b c d    
Câu 5. Cho hình chóp có đáy là tam giác đều. Nếu tăng độ dài cạnh đáy lên 2 lần và độ dài 
đường cao không đổi thì thể tích tăng lên bao nhiêu lần? 
 A. . B. . C. . D. . 
Câu 6. Cho hàm số 
1
(C)
1
x
y
x



. Có bao nhiêu cặp điểm A, B thuộc  C mà tiếp tuyến tại đó song 
song với nhau: 
 A. 1. B. Không tồn tại cặp điểm nào. 
 C. vô số số cặp điểm. D. 2 . 
Câu 7. Cho hàm số 2( 1)( 5 9)y x x x    có đồ thị (C) .Mệnh đề nào sau đây đúng? 
 A. (C) cắt trục hoành tại 4 điểm B. (C) cắt trục hoành tại 2 điểm 
 C. (C) cắt trục hoành tại 3điểm D. (C)cắt trục hoành tại 1 điểm 
Câu 8. Số mặt phẳng cách đều tất cả các đỉnh của một hình lăng trụ tam giác là 
 A. 3 B. 2 C. 4 D. 1 
Câu 9. Cho hàm số có đồ thị . Với giá trị nào của thì tiếp tuyến của (C) tại điểm 
có hoành độ bằng 0 song song với đường thẳng ? 
 A. . B. . C. . D. . 
  3 2f x x ax bx c    1x   1 3f  
2 3x 
 3 27f   3 29f   3 81f   3 29f  
3 3 5y x x    0;2
.S ABC M N ,SA SB .
.
S ABC
S MNC
V
V
1
2

1
4
 2 4
.S ABC
.S ABC
3 4
1
2
2
1
x m
y
x



( )mC m
3 1y x 
3m  2m  1m  2m  
 Trang 2/7 - Mã đề thi 001 
Câu 10. . Cho hình chóp có đáy là hình vuông cạnh , cạnh vuông góc với đáy 
và mặt phẳng tạo với đáy một góc . Tính thể tích khối chóp . 
 A. . B. . C. . D. . 
Câu 11. Cho hàm số 
2 1
2
x
y
x



. Khẳng định nào sao đây là khẳng đinh đúng? 
 A. Hàm số nghịch biến trên các khoảng  ;2 và  2; . 
 B. Hàm số đồng biến trên \{2} . 
 C. Hàm số đồng biến trên các khoảng  ;2 và  2; . 
 D. Hàm số nghịch biến trên \{2} . 
Câu 12. Đồ thị hàm số 
1 3
2
x
y
x



 có các đường tiệm cận đứng và tiệm cận ngang lần lượt là: 
 A. 2x   và 1y  . B. 2x  và 1y  . 
 C. 2x   và 3y  . D. 2x   và 3y   . 
Câu 13. Cho và . Giả sử cắt tại hai điểm phân biệt thì tọa 
độ trung điểm của đoạn thẳng là 
 A. B. C. D. 
Câu 14. Số nghiệm của phương trình sin 3 cos 1x x  trên khoảng  0; là 
 A. 1 B. 3 C. 0 D. 2 
Câu 15. Trong các dãy số sau đây dãy số nào là cấp số cộng? 
 A. 1; 1nu n n   B. 2 3; 1nu n n   C. 
2 1; 1nu n n   D. 
1( 2) ; 1nnu n
   
Câu 16. Cho hàm số 
2 3
( )
2
x
y C
x



. Gọi M là điểm bất kỳ trên (C), d là tổng khoảng cách từ M đến 
hai đường tiệm cận của đồ thị (C). Giá trị nhỏ nhất của d là 
 A. 10. B. 2. C. 5. D. 6. 
Câu 17. Trong các mệnh đề sau, mệnh đề nào sai? 
 A. Chỉ có năm loại khối đa diện đều. 
 B. Mỗi khối đa diện đều là một khối đa diện lồi. 
 C. Mỗi cạnh của hình đa diện là cạnh chung của đúng hai mặt. 
 D. Hình chóp tam giác đều là hình chóp có bốn mặt là các tam giác đều. 
Câu 18. Cho khối chóp tứ giác đều có tất cả các cạnh bằng a . Thể tích khối chóp bằng 
 A. 
3 3
2
a
. B. 
3 3
4
a
. C. 
3
3
a
. D. 
3 2
6
a
. 
Câu 19. Cho hàm số có đạo hàm . Hàm số nghịch 
biến trên khoảng 
 A. và B. 
 C. D. 
Câu 20. Cho hàm số có đồ thị như Hình . Đồ thị Hình là của hàm số nào dưới 
đây? 
.S ABCD ABCD 2a SB
 SAD 60 .S ABCD
33 3
4
a
V 
34 3
3
a
V 
33 3
8
a
V 
38 3
3
a
V 
  2 2: 2P y x x m   : 2 1d y x   P d ,A B
I AB
 2; 5I  22;I m  1; 3I  21; 1I m 
 y f x   2' 5 6,f x x x x       5y f x 
( ;2) (3; ) ( ;3)
(2; ) (2;3)
3 26 9  y x x x 1 2
 Trang 3/7 - Mã đề thi 001 
Hình Hình 
 A. B. 
 C. D. . 
Câu 21. Cho hàm số (x)y f có đồ thị như sau: 
số nghiệm của phương trình 2 ( ) 3 0f x   
 A. 0. B. 2. C. 4. D. 1. 
Câu 22. Hỏi hàm số ( )y f x có đồ thị như hình: 
Hàm số nghịch biến trên khoảng nào 
 A. ( ; 1)  và (1; ) B. ( 1;1) 
 C. ( ; 1)  D. ( 2; )  
Câu 23. Cho hàm số có đạo hàm liên tục trên . Bảng biến thiên của hàm số được cho 
như hình vẽ bên. 
x
y
3O 2
4
1
x
y
-1-3 -2
2
3O 2
4
1
1 2
3 2
6 9 .  y x x x
3 26 9 .  y x x x
3 26 9 .   y x x x
3 26 9  y x x x
x
y
-1
1
-1
0
1
( )y f x  ( )y f x
 Trang 4/7 - Mã đề thi 001 
Hàm số nghịch biến trên khoảng 
 A.  4; 2  B.  2;0 C.  2;4 D.  0;2 
Câu 24. Cho hàm số  y f x có đạo hàm      2 21 2f x x x x    với x  . Có bao nhiêu giá trị 
nguyên dương của tham số m để hàm số  2 8f x x m  có 5 điểm cực trị? 
 A. 18 B. 15 C. 16 D. 17 
Câu 25. Phương trình : 2sin 0x m  vô nghiệm khi m là: 
 A. 2 2m   B. 2m  C. 
2
2
m
m
 
 
 D. 2m   
Câu 26. Cho hàm số . Khẳng định nào sau đây là đúng: 
 A. Hàm số đạt cực đại tại . B. Hàm số đạt cực tiểu tại . 
 C. Hàm số không có cực trị. D. Hàm số đạt cực tiểu tại . 
Câu 27. Một chất điểm chuyển động theo quy luật vận tốc v (m/s) của chuyển động đạt 
giá trị lớn nhất tại thời điểm t (s) bằng 
 A. 12 (s) B. 4 (s) C. 6 (s) D. 2 (s) 
Câu 28. Cho hàm số . Hàm số có đồ thị như hình vẽ: 
Khẳng định nào sau đây là khẳng định đúng? 
 A. Đồ thị hàm số có hai điểm cực trị. 
 B. Đồ thị hàm số có một điểm cực tiểu. 
 C. Hàm số đạt cực đại tại . 
 D. Hàm số đồng biến trên . 
Câu 29. Trong không gian cho đường thẳng  và điểm . Qua có bao nhiêu đường thẳng vuông 
góc với ? 
 A. Vô số. B. 3 C. 2 D. 1 
Câu 30. Cho khối lăng trụ đứng .ABC A B C   có BB a  , đáy ABC là tam giác vuông cân tại B và 
2AC a . Tính thể tích V của khối lăng trụ đã cho. 
 A. 
3.V a B. 
3
.
6
a
V  C. 
3
.
2
a
V  D. 
3
.
3
a
V  
Câu 31. Đườngconghìnhbên dướilàđồthịcủahàmsố nào? 
1
2
x
y f x
 
   
 
4 33 4 2y x x  
1x  0x 
1x 
2 36 ,S t t 
( )y f x '( )y f x
( )y f x
( )y f x
( )y f x 1x 
( )y f x ( ;1)
O O
 Trang 5/7 - Mã đề thi 001 
 A. . B. 
 C. . D. . 
Câu 32. Cho hàm số 22 5 4y x x   . Đạo hàm ycủa hàm số là 
 A. 
2
4 5
2 2 5 4
x
y
x x

 
 
. B. 
2
2 5
2 2 5 4
x
y
x x

 
 
. 
 C. 
2
2 5
2 5 4
x
y
x x

 
 
. D. 
2
4 5
2 5 4
x
y
x x

 
 
. 
Câu 33. Khoảng cách giữa 2 điểm cực trị của đồ thị hàm số 3 3y x x  là: 
A.2 5 B.2. A. 4 5. . D.4. 
Câu 34. Tìm tất cả các đường tiệm cận của đồ thị hàm số 
2
3
1
x
y
x



 A. 1y   . B. 1x  . C. 1y   . D. 1y  . 
Câu 35. Trong mặt phẳng với hệ tọa độ , cho véctơ và điểm . Hỏi là ảnh của 
điểm nào trong các điểm sau đây qua phép tịnh tiến theo ? 
 A.  2;4I B.  6;6B C.  1; 1D  D.  2; 4C   
Câu 36. Cho hình chóp .S ABC có tam giác ABC vuông cân tại B , AB a . Gọi I là trung điểm 
của AC . Hình chiếu vuông góc của S lên mặt phẳng  ABC là điểm H thỏa mãn 3BI IH
 
. Góc 
giữa hai mặt phẳng  SAB và  SBC là 60 . Thể tích khối chóp .S ABC là 
 A. 
3
3
a
V  . B. 
3
9
a
V  . C. 
3
18
a
V  . D. 
3
6
a
V  . 
Câu 37. Cho đường thẳng  d : 7 15 0x y   . Mệnh đề nào sau đây đúng ? 
 A.  d có hệ số góc 
1
7
k  B.  d đi qua hai điểm
1
;2
3
M
 
 
 
và  5;0N . 
 C.  7;1u  

là vecto chỉ phương của  d D.  d đi qua gốc tọa độ. 
Câu 38. Cho hàm số  3 2x 4 9 7     y x m m x , m là tham số. Có bao nhiêu giá trị nguyên của m 
để hàm số nghịch biến trên  . 
 A. 5. B. 7. C. 4. D. 6. 
Câu 39. Cho hàm số . Mệnh đề nào sau đây sai? 
 A. Hàm số có cực đại, cực tiểu khi B. Hàm số có cực đại, cực tiểu khi 
x
y
O
1
1
2
3 23 3 1   y x x x 3 3 1  y x x
3 23 1   y x x 3 23 1   y x x
Oxy  2;1v 

 4;5A A
v

3 21 2 (4 1) 3
3
y x mx m x    
1
.
2
m  1.m 
 Trang 6/7 - Mã đề thi 001 
 C. Hàm số có cực đại, cực tiểu khi 
 D. Với mọi , hàm số luôn có cực trị. 
Câu 40. Phương trình tiếp tuyến của đồ thị hàm số tại điểm là 
 A. . B. . C. . D. . 
Câu 41. Cho ba số thực , ,x y z trong đó 0x  . Biết rằng , 2 , 3x y z lập thành cấp số cộng và , ,x y z 
lập thành cấp số nhân; tìm công bội q của cấp số nhân đó. 
 A. 
1
1
3
q
q


 

. B. 
1
3
2
3
q
q



 

. C. 2q  . D. 1q   . 
Câu 42. Cho tập S gồm 20 phần tử. Tìm số tập con gồm 3 phần tử của S 
 A. 3
20C B. 
320 C. 320A D. 60 
Câu 43. Đường tròn 2 2 2( ) ( )x a y b R    cắt đường thẳng 0x y a b    theo một dây cung có độ 
dài bằng bao nhiêu ? 
 A. 2R B. 2R C. R D. 
2
2
R
Câu 44. Một trang chữ của một quyển sách tham khảo Toán học cần diện tích 384 cm2. Biết rằng 
trang giấy được canh lề trái là 2cm, lề phải là 2 cm, lề trên 3 cm và lề dưới là 3 cm. Trang sách đạt 
diện tích nhỏ nhất thì có chiều dài và chiều rộng là: 
 A. 40 cm và 25cm B. 40 cm và 20 cm C. 30 cm và 25 cm D. 30 cm và 20 cm 
Câu 45. Cho tứ diện . Gọi lần lượt là trung điểm của và . Chọn mệnh đề đúng: 
 A. B. 
 C. D. . 
Câu 46. Cho biết 
2
31
1 2
lim
3 2x
ax bx
x x
  
 
( , )a b có kết quả là một số thực. Giá trị của biểu thức 2 2a b 
bằng 
 A. 6 5 3 B. 
45
16
 C. 
9
4
 D. 87 48 3 
Câu 47. Có bao nhiêu giá trị thực của m để phương trình   2sin 1 2cos (2 1)cos 0x x m x m     có 
đúng bốn nghiệm thực phân biệt thuộc đoạn  0;2 
 A. 3. B. 2. C. 1. D. 4. 
Câu 48. Tập nghiệm của bất phương trình 2( 3 2 1) 1 0x x    là 
 A. 
3
1;
2
 

 
 B.  1; C. 
2
;1
3
 
 
 
 D.  2;3 
Câu 49. Có bao nhiêu tiếp tuyến của đồ thị hàm số 3 22y x x   song song với đường thẳng y x ? 
A. 2. B. 4. C. 3. D.1. 
Câu 50. Từ một hộp chứa 6 quả cầu đỏ và 4 quả cầu xanh, lấy ngẫu nhiên đồng thời 4 quả cầu. 
Tính xác suất để 4 quả cầu lấy ra cùng màu. 
1
.
2
m  m
1
1
x
y
x



 2;3C 
2 7y x  2 1y x  2 7y x   2 1y x  
ABCD ,M N AB CD
1
( )
2
MN AD BC 
  
2( )MN AB CD 
  
1
( )
2
MN AC CD 
  
2( )MN AC BD 
  
 Trang 7/7 - Mã đề thi 001 
 A. 
4
53
 B. 
24
105
 C. 
18
105
 D. 
8
105
------------- HẾT ------------- 
ĐÁP ÁN MÃ ĐỀ 001 
Mã đề [001] 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 
B D D B B C D C B D C D A A B B D A D B C B A B C 
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 
D D B A C A A A A A B A B D A A A B D A B B C D D 

File đính kèm:

  • pdfde_thi_thu_thpt_quoc_gia_mon_toan_lan_1_ma_de_001_nam_hoc_20.pdf
Giáo án liên quan