Đề thi thử Đại học năm 2013 số 007 môn Vật lý

Câu 1:

 Năng lượng điện trường .Năng lượng từ trường .

Et = 3Eđ =>. sin2(t +) = 3cos2(t +) ----> 1 - cos2(t +) =3cos2(t +)

----> cos2(t +) = ¼----->cos(t +) = ± 0,5

Trong một chu kì dao động khoảng thời gian giữa hai lần liên tiếp năng lượng từ trường bằng 3 lần năng lượng điện trường có hai khả năng:

t1 = tM1M2 = T/6 hoặc t2 = tM2M3 = T/3. Bài ra cho thời gian ngắn nhất giữa hai lần liên tiếp Et = 3Eđ nên ta chọn t1 = 10-4s -------> chu kì T = 6.10-4s Chọn C

Câu 2:

Giải: Gọi công suất điện của nhà máy là P, công suất tiêu thụ của mỗi hộ dân là P0.; điện trở đường dây tải là R và n là số hộ dân được cung cấp điện khi điện áp truyền đi là 3U

 Công suất hao phí trên đường dây : P = P2 R/U2

 Theo bài ra ta có

 P = 36P0 + P2R/U2 (1) P = 144P0 + P2R/4U2 (2) P = nP0 + P2R/9U2 (3)

Nhân (2) với 4 trừ đi (1) 3P = 540P0 (4)

Nhân (3) với 9 trừ đi (1) 8P = (9n – 36)P0 (5) Từ (4) và (5) ta có n = 164. Chọn A

Câu 3:

 

doc15 trang | Chia sẻ: hoanphung96 | Lượt xem: 877 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Đề thi thử Đại học năm 2013 số 007 môn Vật lý, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
o con lắc lệch phương thẳng đứng một góc 0,1 rad rồi thả nhẹ.biết lực căn của không khí tác dụng lên con lắc là không đổi và bằng 0,001 lần trọng lượng của vật.coi biên độ giảm đều trong từng chu kỳ.số lần con lắc qua vị trí cân băng đến lúc dừng lại là:
 A. 25 B. 50 C. 100 D. 200
Câu 20: cho 1 vật dao động điều hòa với biên độ A=10 cm , tần số f=2 Hz.tốc độ trung bình mà vật đi được trong thời gian 1/6 s là: 
A. 30 cm/s 	 B. 30cm/s 	 C. 60cm/s 	 D. 60 cm/s
Câu 21 : dòng điện woay chiều chạy qua một đoạn mạch có biểu thức cương độ dòng điện là i=I0 cos(ωt-), với I0 > 0.tính từ lúc t=0 (s),điiện lượng chuyển qua tiết diện thẳng của dây dẫn của đoạn mạch đó trong thời gian bằng nửa chu kỳ của dòmh điện là: 
A. B. 0 C. D. 
Câu 22: người ta truyền tải điện năng từ A đến B.ở A dùng một máy tăng thế và ở B dùng hạ thế, dây dẫn từ A đến B có điện trở 40Ω.cường độ dòng điện trên dây là 50A.công suất hao phí bằng trên dây bằng 5% công suất tiêu thụ ở B và hiệu điện thế ở hai đầu cuộn thứ cấp của mấy hạ thế là 200V .biết dòng điện và hiệu thế luôn cùng pha và bỏ qua hao phí trên máy biến thế.tỉ số biến đổi của mấy hạ thế là: 
A. 0,005 B. 0.05 C. 0,01 D. 0,004 
Câu 23: Một mạch dao động LC lý tưởng gồm cuộn thuần cảm có độ tự cảm không thay đổi và 1 tụ điện có hai bản tụ phẳng đặt song song và cách nhau 1 khoảng cố định. Để phát ra sóng điện từ có tần số dao động tăng gấp 2 lần thì diện tích đối diện của bản tụ phải: 
 A. tăng 4 lần 	 B. giảm lần 	C. giảm 4 lần 	D. tăng 2 lần 
Câu 24: Hai dao động điều hòa cùng tần số x1 = A1.cos(ωt-) cm và x2 = A2.cos(ωt-π) cm có phương trình dao động tổng hợp là x = 9.cos(ωt+φ). để biên độ A2 có giá trị cực đại thì A1 có giá trị: A.18cm 	 B. 7cm 	 C.15 	 D. 9cm
Câu 25: Một con lắc lò xo dao động tắt dần trên mạt phẳng nằm ngang với các thông số như sau: m=0,1Kg, vmax=1m/s,μ=0.05.tính độ lớn vận tốc của vật khi vật đi được 10cm.
 A. 0,95cm/s 	B.0,3cm/s 	 C. 0.95m/s 	D. 0.3m/s
Câu 26: Một vật thực hiện đông thời 2 dao động điều hòa: =A1cos(wt)cm;X=2,5cos(ωt+φ2) và người ta thu được biên độ mạch dao động là 2,5 cm.biết A1 đạt cực đại, hãy xác định φ2 ?
 A. không xác định được 	B. rad 	C. rad 	D. rad
Câu 27: Một con lắc đơn gồm quả cầu nhỏ khối lượng m treo vào sợi dây có chiều dài = 40 cm. Bỏ qua sức cản không khí. Đưa con lắc lệch khỏi phương thẳng đứng góc α0 = 0,15 rad rồi thả nhẹ, quả cầu dao động điều hòa. Quãng đường cực đại mà quả cầu đi được trong khoảng thời gian 2T/3 là
A.18 cm.	B. 16 cm.	C. 20 cm.	D. 8 cm.
Câu 28: Hai tụ điện C1 = C2 mắc song song. Nối hai đầu bộ tụ với ắc qui có suất điện động E = 6V để nạp điện cho các tụ rồi ngắt ra và nối với cuộn dây thuần cảm L để tạo thành mạch dao động. Sau khi dao động trong mạch đã ổn định, tại thời điểm dòng điện qua cuộn dây có độ lớn bằng một nữa giá trị dòng điện cực đại, người ta ngắt khóa K để cho mạch nhánh chứa tụ C2 hở. Kể từ đó, hiệu điện thế cực đại trên tụ còn lại C1 là:
3. B.3. C.3. D. 
Câu 29: Cho đoạn mạch RLC nối tiếp cuộn dây thuần L và có thể thay đổi được, R, C xác định. Mạch điện mắc vào nguồn có điện áp u = U0cos(t)V không đổi. Khi thay đổi giá trị L thì thấy điện áp hiệu dụng cực đại trên R và L chênh lệch nhau 2 lần. Hiệu điện thế cực đại trên tụ C là:
A. 2.U	B. 	C. 	D. 
Câu 30: Một người định cuốn một biến thế từ hiệu điên thế U1 = 110V lên 220V với lõi không phân nhánh, không mất mát năng lượng và các cuộn dây có điện trở rất nhỏ, với số vòng các cuộn ứng với 1,2 vòng/V. Người đó cuốn đúng hoàn toàn cuộn thứ cấp nhưng lại cuốn ngược chiều những vòng cuối của cuộn sơ cấp. Khi thử máy với nguồn thứ cấp đo được U2 = 264 V so với cuộn sơ cấp đúng yêu cầu thiết kế, điện áp nguồn là U1 = 110V. Số vòng cuộn sai là: 	
A. 20             	 B.10              	    C. 22       	        D. 11
Câu 31: Cho mạch điện xoay chiều RCL mắc nối tiếp . Đặt vào hai đầu đoạn mạch điện áp xoay chiều ổn định có biểu thức dạng u =Ucoswt, tần số góc thay đổi. Khi (rad/s) thì UL max. Khi (rad/s) thì UC max . Tìm để UR max . 
A. 50 	B. 150	C. 60 	D.130
Câu 32: Một mạch dao động lý tưởng gồm cuộn dây có độ tự cảm L và tụ điện có điện dung C, cung cấp cho tụ một năng lượng bằng cách ghép tụ vào nguồn điện không đổi có suất điện động E = 2V. Mạch thực hiện dao động điện từ với biểu thức năng lượng từ Wt = 2.10-8cos2wt(J). Điện dung của tụ (F) là : 
A. 5.10-7 F	B. 2,5 F	C. 4F	D. 10-8F
 Câu 33: Một con lắc đơn gồm một vật nhỏ được treo vào đầu dưới của một sợi dây không giãn, đầu trên của sợi dây được buộc cố định. Bỏ qua ma sát và lực cản của không khí. Kéo con lắc lệch khỏi phương thẳng đứng một góc 0,1 rad rồi thả nhẹ. Tỉ số giữa độ lớn gia tốc của vật tại vị trí biên và độ lớn gia tốc tại vị trí động năng bằng 2 thế năng là : 
A. 	B. 3	C. 1/3	D. 
Câu 34: Mạch điện xoay chiều gồm biến trở mắc nối tiếp với cuộn dây thuần cảm và tụ điện. Mắc vào mạch điện này một hiệu điện thế xoay chiều ổn định . Người ta điều chỉnh giá trị của biến trở đến khi công suất của mạch điện là (W) thì khi đó dòng điện trễ pha so với hiệu điện thế 2 đầu đoạn mạch góc .Tiếp tục điều chỉnh giá trị của biến trở tới khi công suât mạch đạt giá trị cực đại. Giá trị cực đại đó bằng : 
A.250W	B.300W	C. W	D.200W
Câu 35: Hạt nhân phóng xạ anpha thành hạt nhân chì bền. Ban đầu trong mẫu Po chứa một lượng mo (g). Bỏ qua năng lượng hạt của photon gama. Khối lượng hạt nhân con tạo thành tính theo m0 sau bốn chu kì bán rã là ? 
	A.0,92m0	B.0,06m0	C.0,98m0	D.0,12m0
Câu 36: chiếu chùm ánh sáng đơn sắc gồm đơn sắc vàng, lam, chàm vào lăng kính có A=450 theo phương vuông góc với mặt bên AB. Biết chiết suất của tia vàng với chất làm lăng kính là . Xác định số bức xạ đơn sắc có thể ló ra khỏi lăng kính : 	A.0	B.1	C.2	 D.3
Câu 37: Đặt điện áp xoay chiều u = 100cos(wt) V vào hai đầu mạch gồm điện trở R nối tiếp với tụ C có ZC = R. Tại thời điểm điện áp tức thời trên điện trở là 50V và đang tăng thì điện áp tức thời trên tụ là
A. -50V. 	 B. - 50V. 	C. 50V. 	D. 50V.
Câu 38: Cho đoạn mạch xoay chiều AB gồm cuộn thuần cảm nối tiếp với tụ điện có điện dung C = và điện trở R = 100W. Điện áp đặt vào hai đầu mạch có biểu thức u = 100cos(100pt) V. Để khi L thay đổi thì UAM (đoạn AM chứa điện trở và tụ điện) không đổi thì giá trị của độ tự cảm là
A. L = 1/p (H). 	B. L = 1/2p (H). 	C. L = 2/p (H). 	D. L = /p (H).
Câu 39: Con lắc lò xo dao động điều hòa theo phương ngang với biên độ A. Đúng lúc con lắc qua vị trí có động năng bằng thế năng và đang giãn thì người ta cố định một điểm chính giữa của lò xo, kết quả làm con lắc dao động điều hòa với biên độ A’. Hãy lập tỉ lệ giữa biên độ A và biên độ A’.
A. 	B. 	C. 	D. 
Câu 40: Trong thang máy treo một con lắc lò xo có độ cứng 25N/m, vật nặng có khối lượng 400 g. Khi thang máy đứng yên ta cho con lắc dao động điều hoà, chiều dài con lắc thay đổi từ 32cm đến 48cm. Tại thời điểm mà vật ở vị trí thấp nhất thì cho thang máy đi xuống nhanh dần đều với gia tốc a = g/10. Lấy g = = 10 m/s2. Biên độ dao động của vật trong trường hợp này là : 
A. 17 cm. 	 B. 19,2 cm. 	 C. 8,5 cm. D. 9,6 cm.
Câu 41: Một chất điểm đang dao động với phương trình x = 6cos10p t (cm) . Tính tốc độ trung bình của chất điểm sau 1/4 chu kì tính từ khi bắt đầu dao động và tốc độ trung bình sau nhiều chu kỳ dao động
A. 1,2m/s và 0 	B. 2m/s và 1,2m/s 	 C. 1,2m/s và 1,2m/s 	D. 2m/s và 0
Câu 42: Tại hai điểm S1 và S2 trên mặt nước cách nhau 20(cm) có hai nguồn phát sóng dao động theo phương thẳng đứng với các phương trình lần lượt là u1 = 2cos(50p t)(cm) và u2 = 3cos(50p t + p )(cm) , tốc độ truyền sóng trên mặt nước là 1(m/s). ĐiểmM trên mặt nước cách hai nguồn sóng S1 ,S2 lần lượt 12(cm) và 16(cm). Số điểm dao động với biên độ cực đại trên đoạn S2M là : 	A.4 	 B.5 	C.6 	 D.7
Câu 43 : Một con lắc đơn có vật nhỏ mang điện tích q. Nếu cho con lắc đơn dao động nhỏ trong điện trường đều E thẳng đứng thì chu kỳ nó bằng T, nếu giữ nguyên độ lớn của E nhưng đổi chiều thì chu kỳ dao động nhỏ là T. Nếu không có điện trường thì chu kỳ dao động nhỏ con lắc đơn là T. Mối liên hệ giữa chúng?
A. 	B. 	C. 	D. 
Câu 44: Một khung dây điện phẳng gồm 10 vòng dây hình vuông cạnh 10cm, có thể quay quanh một trục nằm ngang ở trong mặt phẳng khung, đi qua tâm O của khung và song song với cạnh của khung. Cảm ứng từ B tại nơi đặt khung B=0,2T và khung quay đều 300 vòng/phút. Biết điện trở của khung là 1Ω và của mạch ngoài là 4Ω. Cường độ cực đại của dòng điện cảm ứng trong mạch là
A. 0,628A	 B. 0,126A	C. 6,280A	D. 1,570A
Câu 45: Mạch dao động gồm cuộn dây có độ tự cảm L=1,2.10-4 H và một tụ điện có điện dung C=3nF. Điện trở của mạch là R = 0,2W. Để duy trì dao động điện từ trong mạch với hiệu điện thế cực đại giữa hai bản tụ là Uo=6V thì trong mỗi chu kì dao động cần cung cấp cho mạch một năng lượng bằng
A. 1,5mJ 	B. 0,09mJ 	C. 1,08p.10-10 J 	D. 0,06p.10-10 J
Câu 46: Hai tấm kim loại A, B hình tròn được đặt gần nhau, đối diện và cách điện nhau. A được nối với cực âm và B được nối với cực dương của một nguồn điện một chiều. Để làm bứt các e từ mặt trong của tấm A, người ta chiếu chùm bức xạ đơn sắc công suất 4,9mW mà mỗi photon có năng lượng 9,8.10-19 J vào mặt trong của tấm A này. Biết rằng cứ 100 photon chiếu vào A thì có 1 e quang điện bị bứt ra. Một số e này chuyển động đến B để tạo ra dòng điện qua nguồn có cường độ 1,6mA. Phần trăm e quang điện bức ra khỏi A không đến được B là : 
 A. 20%	 	B. 30%	 	C. 70%	 D. 80%
Câu 47: Tại mặt nước nằm ngang, có hai nguồn kết hợp A và B dao động theo phương thẳng đứng với phương trình lần lượt là u1 = a1cos(40pt + p/6) (cm), u2 = a2cos(40pt + p/2) (cm). Hai nguồn đó tác động lên mặt nước tại hai điểm A và B cách nhau 18 cm. Biết vận tốc truyền sóng trên mặt nước v = 120 cm/s. Gọi C và D là hai điểm thuộc mặt nước sao cho ABCD là hình vuông. Số điểm dao động với biên độ cực đại trên đoạn CD là : 	A. 4 	 B. 3 	 C. 2 	 D. 1 
Câu 48: Hai con lắc lò xo giống nhau cùng có khối lượng vật nặng m = 10g, độ cứng lò xo là k = p2 N/cm, dao động điều hòa dọc theo hai đường thẳng song song kề liền nhau (vị trí cân bằng hai vật đều ở cùng gốc tọa độ). Biên độ của con lắc thứ hai lớn gấp ba lần biên độ của con lắc thứ nhất. Biết rằng lúc hai vật gặp nhau chúng chuyển động ngược chiều nhau. Khoảng thời gian giữa hai lần hai vật nặng gặp nhau liên tiếp là
A. 0,02 s.	B. 0,04 s.	C. 0,03 s.	D. 0,01 s.
Câu 49: Dao động tổng hợp của hai dao động điều hòa cùng phương, cùng tần số có biên độ bằng trung bình cộng của hai biên độ thành phần; có góc lệch pha so với dao động thành phần thứ nhất là 900. Góc lệch pha của hai dao động thành phần đó là : 
 A. 1200. 	 B. 1050.	 C. 143,10. 	 D. 126,90.
Câu 50: Một vật có khối lượng m1 = 1,25 kg mắc vào lò xo nhẹ có độ cứng k = 200 N/m, đầu kia của lò xo gắn chặt vào tường. Vật và lò xo đặt trên mặt phẳng nằm ngang có ma sát không đáng kể. Đặt vật thứ hai có khối lượng m2 = 3,75 kg sát với vật thứ nhất rồi đẩy chậm cả hai vật cho lò xo nén lại 8 cm. Khi thả nhẹ chúng ra, lò xo đẩy hai vật chuyển động về một phía. Lấy =10, khi lò xo giãn cực đại lần đầu tiên thì hai vật cách xa nhau một đoạn là: A. (cm) B. 16 (cm) C. (cm) D. (cm)
.......................................................................
 HƯỚNG DẪN GIẢI CHI TIẾT ĐỀ THI THỬ ĐẠI HỌC VẬT LÝ SỐ 007 - Năm 2013
Câu 1: 
 Năng lượng điện trường .Năng lượng từ trường .
Et = 3Eđ =>. sin2(wt +j) = 3cos2(wt +j) ----> 1 - cos2(wt +j) =3cos2(wt +j) 
----> cos2(wt +j) = ¼----->cos(wt +j) = ± 0,5
Trong một chu kì dao động khoảng thời gian giữa hai lần liên tiếp năng lượng từ trường bằng 3 lần năng lượng điện trường có hai khả năng:
t1 = tM1M2 = T/6 hoặc t2 = tM2M3 = T/3. Bài ra cho thời gian ngắn nhất giữa hai lần liên tiếp Et = 3Eđ nên ta chọn t1 = 10-4s -------> chu kì T = 6.10-4s Chọn C
Câu 2: 
Giải: Gọi công suất điện của nhà máy là P, công suất tiêu thụ của mỗi hộ dân là P0.; điện trở đường dây tải là R và n là số hộ dân được cung cấp điện khi điện áp truyền đi là 3U
 Công suất hao phí trên đường dây : DP = P2 R/U2
 Theo bài ra ta có 
 P = 36P0 + P2R/U2 (1)	 P = 144P0 + P2R/4U2 (2)	 P = nP0 + P2R/9U2 (3)
Nhân (2) với 4 trừ đi (1) 3P = 540P0 (4)
Nhân (3) với 9 trừ đi (1) 8P = (9n – 36)P0 (5) Từ (4) và (5) ta có n = 164. Chọn A
Câu 3: 
Giải: Theo định lý động năng ta có DWđ = 
----> 
=> v = (m/s)
Câu 4: 
Điện thế của quả cầu đạt được khi e(Vmax – 0) = 
ta có hf1 = A + = A + eV1 (1) Với A = (2)
 h(f1+ f) = A + = A + eV2 = A + 7eV1 (3) hf = A + = A + eV (4)
Lấy (3) – (1) : hf = 6eV1 => 6eV1 = A + eV=> eV = 6eV1 – A = 3eV1 Do đó V = 3V1
Câu 5: 
 Gọi R0 , ZL , ZC là điện trở thuần, cảm kháng và dung kháng của quạt điện.
Công suấ định mức của quạt P = 120W ; dòng điện định mức của quạt I. Gọi R2 là giá trị của biến trở khi quạt hoạt động bình thường khi điện áp U = 220V
 Khi biến trở có giá tri R1 = 70W thì I1 = 0,75A, P1 = 0,928P = 111,36W
 P1 = I12R0 (1) => R0 = P1/I12 » 198W (2)
 I1 = 
Suy ra : (ZL – ZC )2 = (220/0,75)2 – 2682 ------> | ZL – ZC | » 119W (3)
Ta có P = I2R0 (4)
 Với I = (5) 
 P = => R0 + R2 » 256W => R2 » 58W R2 ∆R = R2 – R1 = - 12W
 Phải giảm 12W. Chọn C
Câu 6: 
Năng lượng điện trường được bảo toàn, ta có: đáp án A
Câu 7: 
+ thời gian ngắn nhất để năng lượng điện trường giảm từ giá trị cực đại xuống còn một nửa tương ứng với: 
 q = q0 => q = 
+ thời gian ngắn nhất để điện tích giảm từ giá trị cực đại xuống một nửa khi đó 
Mà: đáp án đúng phải là B.
Câu 8: 
 Khi t = 0 x = 0. Sau t1 = 0,5s --àS1 = x = A/2. Vẽ vòng tròn Ta có t1 = T/12 ----à Chu kì T = 6s
Sau khoảng thời gian t2 =12,5 s = 2T + 0,5s Do đó S2= 8A + S1 = 68cm. ĐA: B
Câu 9: 
Giải. Thời gian lò xo nén là T/3
 Thời gian khi lò xo bắt đàu bị nén đến lúc nén tối đa là T/6. Độ nén của lò xo là A/2, bằng độ giãn của lò xo khi vật ở vị trí cân bằng. Suy ra A = 12cm. Do đó đọ giãn lớn nhất của lò xo 6cm + 12cm = 18cm. Chọn ĐA B 
Câu 10: 
 Giải: Theo bài ra la có l = 3λ/2 à λ = 0,8m, Khoảng thời gian giữa hai lần sợi dây duỗi thẳng là nửa chu kì: T = 0,1s.Do đó tần số góc ω = 2π/T = 20π (rad/s). Biên độ dao động của bụng sóng bằng một nửa bề rộng của bụng sóng: A =2cm vmax của bụng sóng = Aω = 2.20π = 40π cm/s. Đáp án A 
Câu 11: 
Giải: Giả sử cuộn dây thuần cảm thì UR2 + (Ud – UC)2 = UAB2 Theo bài ra 252 +( 25 – 175)2 ≠ 1752
 Cuộn dây có điện trở thuần r; Hệ số công suất của mạch cosφ = 
 Ta có (UR + Ur)2 +(UL –UC)2 = U2 (1)
 Ur2 + UL2 = Ud2 (2)
 Thay số ; giải hệ pt ta được: Ur = 24 V; UL = 7V------àcosφ = = 7/25.
Câu 12: 
Bài giải: Năng lượng mà nguyên tử hiđro nhận: W = W2 – W1 = - 13,6/4 (eV) – (- 13,6) (eV) = 10,2 (eV)
 Động năng của electron sau va chạm là Wđ = 12,6 (eV) – 10,2 (eV) = 2,4 (eV). Chọn A
Câu 13
Giải: Suất điện động của nguồn điện: E = wNF0 = 2pfNF0 = U ( do r = 0)
 Với f = np n tốc độ quay của roto, p số cặp cực từ
 Do I1 = I2 ta có:
----> f12[R2 +4p2L2f22 + - 2] = f22[R2 +4p2L2f12 + - 2] 
-----> (*)
Dòng điện hiệu dụng qua mạch : I = 
 I = Imac khi E2 /Z2 có giá trị lớn nhất hay khi y = có giá trị lớn nhất
y = = 
Để y = ymax thì mẫu số bé nhất
 Đặt x = . Lấy đạo hàm mẫu số, cho bằng 0 ta được kết quả x0 = 2p2C2(2
 = 2p2C2(2 (**)
Từ (*) và (**) ta suy ra
 hay ------> Chọn B
Câu 14: 
uAB = uAM + uMB
Mà uMB = - uBM = - 50cos(ωt-π/2) = 50cos(ωt - π/2 + π) = 50cos(ωt + π/2)V
Câu 15: 
Áp dụng công thức; q = 
Khi t=t0 thì i=0---> t0 = . 
 Còn t = t0 + T/4 = 1/300 + 1/200 = 5/600 (s)
Suy ra q = Chọn B.
Có thể giải theo cách khác Ở thời điểm t0 i0 = 0, khi đó q0 = 0
Sau thời gian t=T/4 thì i = I0 đạt giá trị cực đại, khi đó q = Q0 = I0/w = I0/100p
Đó cũng là điện lượng đã chuyển qua mạch trong ¼ chu kì
Câu 16: 
Ta có vmax = wA = 3 (m/s) và amax = w2A = 30π (m/s2 ) 
----> w = 10π (rad/s) và A = (m)
Phương trình dao động của vật x = Acos(10πt + j)
Khi t = 0 v = 1,5 m/s = vmax/2------> động năng Wđ = W/4 -----> thế năng Wt = 3W/4
 = Acosj, thế năng đang tăng nên v>0 ----> sinj <0. Từ đó suy ra j = -
Phương trình dao động của vật x = Acos(10πt + j) = cos(10πt - )
Gia tốc a = - w2x = - 30πcos(10πt - ) (m/s2)
 - 30pcos(10πt - ) = 15p -----> cos(10πt - ) = - = cos
10πt - = ±+2kπ-------> t = -----> Hai họ nghiệm
π/6
2π/3
M0
M
t1 = + 0,2k = 0,0833 + 0,2k (với k = 0; 1; 2; ....)
t2 = - + 0,2k = - + 0,2 + 0,2k’ = 0,15 + 0,2k’ (với k’ = 0; 1; 2; ....)
Các thời điểm vật có gia tốc 15p (m/s2): 0,0833s, 0,15s, 0,2833s; 0,35s ......
Giá trị đầu tiên của t = tmin: = 0,0833s
 Đáp án khác với bài ra. 
 Có thể dùng vòng tròn lượng giác:
Khi t = 0 vật ở M0
Sau thời gian t vật ở M có gia tốc 
 a = 15π (m/s2); T = 0,2s
 t = T/12 + T/3 = 5T/12 = 1/12 = 0,0833 s
Câu 17: 
Giải: Tương tự bài trên => (1) 
Do C1> C2 nên ZC1 0 => j2 < 0
Theo đề cho cường độ dòng điện vuông pha với nhau => j1 = 
Ta có : => ZL -ZC1 = 100W (2) 
Thế (1) vào (2): ZL - ZL = 100W => ZL = 300W => 
Câu 18: 
* Chiếu f1 thì : 
Điện thế cực đại hay 
* Chiếu f2=f1+f thì 
* Chiếu f thì 
Vậy 
Câu 19: 
 Gọi ∆a là độ giảm biên độ góc sau mỗi lần qua VTCB. (∆a< 0,1)
 Cơ năng ban đầu W0 = mgl(1-cosa) = 2mglsin2» mgl
Độ giảm cơ năng sau mỗi lần qua VTCB:
 ∆W = (1)
Công của lực cản trong thời gian trên:
 Acản = Fc s = 0,001mg(2a - ∆a)l (2)
 Từ (1) và (2), theo ĐL bảo toàn năng lượng: ∆W = Ac 
 = 0,001mg(2a - ∆a)l 
----> (∆a)2 – 0,202∆a + 0,0004 = 0----> ∆a = 0,101 ± 0,099. Loại nghiệm 0,2 ta có ∆a= 0,002
 Số lần vật qua VTCB N = . Chọn B.
Câu 20: 
Giải: Chu kì dao động của con lắc: T = 1/f = 0,5 (s). Thời gian t = 
 Trong thời gian 1/3 chu kì:
* Quãng đường vật đi được lớn nhất là A: Vật đi từ vị trí có li đô x1 = đến vị trí có li độ x2 = -. Do đó vTBmax = 60cm/s
* Quãng đường vật đi được nhỏ nhất là A: Vật đi từ x = A/2 ra biên A rồi quay trở lại A/2
 Đo đó vTBmin = 60cm/s
Câu 21 
Giải: Khi t = t0 = 0 thì i0 = 0 . Ta thấy i = 0 ở các thời điểm t = k
 i = I0 tại các thời điểm t = (2k+1).
 Trong khoang thời gian từ t = 0 đến t = T/4 lượng điện tích qua mạch tăng từ 0 đến
 q1 = I0/w. Đó chính là điên lượng qua mạch trong khoảng thời gian đó. Từ thời điểm t = T/4 đến thời điểm t = T/2 điện tích giảm từ q2 = I0 /w đến 0. 
 Do đó lượng điện tích qua mạch trong nửa chu kì q = q1 + q2 = . Chon đáp án D.
Câu 22: 
Giải: Gọi cường độ dòng điện qua cuoonk sơ cấp và thứ cấp của máy hạ thế là I1 và I2
Công suất hao phí trên đường dây: ∆P = I12R = 0,05U2I2 
 Tỉ số biến đổi của máy hạ thế 
 k = . Chọn A. 
Câu 23: 
Giải: Tần số dao động của mạch được xác định theo công thức: f = . 
Để tăng tần số lên gấp 2 lần thì điện dung của tụ điện C phải giảm đi 4 lần.
 Điệ dung của tụ điện phẳng C được xác định theo công thức:
 C = với e là hằng số điện môi, d khoảng cách giữa hai bản cực không đổi. 
Do đó để giảm C đi 4 lần ta cần giảm S đi 4 lần. Chọn C
Câu 24: Hai dao động điều hòa cùng tần số x1 = A1.cos(ωt-) cm và x2 = A2.cos(ωt-π) cm có phương trình dao động tổng hợp là x = 9.cos(ωt+φ). để biên độ A2 có giá trị cực đại thì A1 có giá trị:
O
a p/6
A
A1
A2
 A.18cm B. 7cm C.15 D. 9cm
Giải: Vẽ giản đồ vectơ như hình vẽ
Theo định lý hàm số sin:
A2 có giá trị cực đại khi sina có giá trị cực đại = 1----> a = p/2
A2max = 2A = 18cm-------> A1 = (cm). Chọn D
Câu 25: Một con lắc lò xo dao động tắt dần trên mạt phẳng nằm ngang với các thông số như sau: m=0,1Kg, vmax=1m/s,μ=0.05.tính độ lớn vận tốc của vật khi vật đi được 10cm.
 A. 0,95cm/s 	B.0,3cm/s 	 C. 0.95m/s 	D. 0.3m/s
Giải: Theo định luật bảo toàn năng lượng, ta có:
=> v2 = - 2mgS 
--------> v = m/s 
 v » 0,95m/s. Chọn đáp án C
Câu 26: Một vật thực hiện đông thời 2 dao động điều hòa: =A1cos(wt)cm;X=2,5cos(ωt+φ2) và người ta thu được biên độ mạch dao động là 2,5 cm.biết A1 đạt cực đại, hãy xác định φ2 ?
j2 
O
A 
a 
A1
A2
 A. không xác định được B. rad C. rad D. rad
Giải: Vẽ giản đồ vectơ như hình vẽ . Theo định lý hàm số sin:
A1 có giá trị cực đại khi sina có giá trị cực đại = 1 ----> a = p/2
A1max = (cm)
 sin(p - j2) = ------> p - j2 = -----> j2 = Chọn D
Câu 27: Một con lắc đơn gồm quả cầu nhỏ khối lượng 

File đính kèm:

  • docdE 007 GIAI CHI TIET DE THI THU DH.doc