Đề cương ôn thi vào lớp 10 môn Toán - Năm học 2016-2017
III: Các bộ điều kiện để phương trình có nghiệm thỏa mãn đặc điểm cho trước:
Tìm điều kiện tổng quát để phương trình ax2+bx+c = 0 (a 0) có:
1. Có nghiệm (có hai nghiệm) 0
2. Vô nghiệm < 0
3. Nghiệm duy nhất (nghiệm kép, hai nghiệm bằng nhau) = 0
4. Có hai nghiệm phân biệt (khác nhau) > 0
5. Hai nghiệm cùng dấu 0 và P > 0
6. Hai nghiệm trái dấu > 0 và P < 0 a.c < 0
7. Hai nghiệm dương(lớn hơn 0) 0; S > 0 và P > 0
8. Hai nghiệm âm(nhỏ hơn 0) 0; S < 0 và P > 0
9. Hai nghiệm đối nhau 0 và S = 0
10.Hai nghiệm nghịch đảo nhau 0 và P = 1
11. Hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn a.c < 0 và S < 0
12. Hai nghiệm trái dấu và nghiệm dương có giá trị tuyệt đối lớn hơn a.c < 0 và S > 0
: §em mét sè nh©n víi 3 råi trõ ®i 7 th× ®îc 50. Hái sè ®ã lµ bao nhiªu? Bµi 2: Tæng hai sè b»ng 51. T×m hai sè ®ã biÕt r»ng sè thø nhÊt th× b»ng sè thø hai. Bµi 3: T×m mét sè tù nhiªn cã hai ch÷ sè, biÕt tæng c¸c ch÷ sè cña nã lµ 7. NÕu ®æi chç hai ch÷ sè hµng ®¬n vÞ vµ hµng chôccho nhau th× sè ®ã gi¶m ®i 45 ®¬n vÞ. Bµi 4: T×m hai sè h¬n kÐm nhau 5 ®¬n vÞ vµ tÝch cña chóng b»ng 150. Bµi 5: T×m sè tù nhiªn cã 2 ch÷ sè, biÕt r»ng sè ®ã b»ng lËp ph¬ng cña sè t¹o bëi ch÷ sè hµng v¹n vµ ch÷ sè hµng ngh×n cña sè ®· cho theo thø tù ®ã. Bµi 6: Mẫu sè cña mét ph©n sè lín h¬n tö sè cña nã lµ 3 ®¬n vÞ. NÕu t¨ng c¶ tö vµ mÉu cña nã thªm 1 ®¬n vÞ th× ®îc mét ph©n sè míi b»ng ph©n sè ®· cho. T×m ph©n sè ®ã? Bµi 7: Tæng c¸c ch÷ sè cña 1 sè cã hai ch÷ sè lµ 9. NÕu thªm vµo sè ®ã 63 ®¬n vÞ th× sè thu ®îc còng viÕt b»ng hai ch÷ sè ®ã nhng theo thø tù ngîc l¹i. H·y t×m sè ®ã? Bµi 8: T×m hai sè tù nhiªn liªn tiÕp cã tæng c¸c b×nh ph¬ng cña nã lµ 85. §¸p sè: Bµi 1: Sè ®ã lµ 19; Bµi 2: Hai sè ®ã lµ 15 vµ 36 Bµi 3: Sè ®ã lµ 61 Bµi 4: Hai sè ®ã lµ 10 vµ 15 hoÆc -10 vµ -15; Bµi 5: Sè ®ã lµ 32. D¹ng 2: To¸n chuyÓn ®éng *Nh÷ng kiÕn thøc cÇn nhí: NÕu gäi qu¶ng ®êng lµ S; VËn tèc lµ v; thêi gian lµ t th×: S = v.t; . Gäi vËn tèc thùc cña ca n« lµ v1 vËn tèc dßng níc lµ v2 t× vËn tèc ca n« khi xu«i dßng níc lµ v = v1 + v2. V©n tèc ca n« khi ngîc dßng lµ v = v1 - v2 *Bµi tËp: 1. Mét « t« khëi hµnh tõ A víi vËn tèc 50 km/h. Qua 1 giê 15 phót « t« thø hai còng khëi hµnh tõ A ®i cïng híng víi « t« thø nhÊt víi vËn tèc 40 km/h. Hái sau mÊy giê th× « t« gÆp nhau, ®iÓm gÆp nhau c¸ch A bao nhiªu km? 2. Mét ca n« xu«i dßng 50 km råi ngîc dßng 30 km. BiÕt thêi gian ®i xu«i dßng l©u h¬n thêi gian ngîc dßng lµ 30 phót vµ vËn tèc ®i xu«i dßng lín h¬n vËn tèc ®i ngîc dßng lµ 5 km/h. TÝnh vËn tèc lóc ®i xu«i dßng? 3. Hai « t« cïng khëi hµnh cïng mét lóc tõ A ®Õn B c¸ch nhau 150 km. BiÕt vËn tèc « t« thø nhÊt lín h¬n vËn tèc « t« thø hai lµ 10 km/h vµ « t« thø nhÊt ®Õn B tríc « t« thø hai lµ 30 phót. TÝnh v©nl tèc cña mçi « t«. 4. Mét chiÕc thuyÒn ®i trªn dßng s«ng dµi 50 km. Tæng thêi gian xu«i dßng vµ ngîc dßng lµ 4 giê 10 phót. TÝnh vËn tèc thùc cña thuyÒn biÕt r»ng mét chiÕc bÌ th¶ næi ph¶i mÊt 10 giê míi xu«i hÕt dßng s«ng. 5. Mét ngêi ®i xe ®¹p tõ A ®Õn B c¸ch nhau 108 km. Cïng lóc ®ã mét « t« khëi hµnh tõ B ®Õn A víi vËn tèc h¬n vËn tèc xe ®¹p lµ 18 km/h. Sau khi hai xe gÆp nhau xe ®¹p ph¶i ®i mÊt 4 giê n÷a míi tíi B. TÝnh vËn tèc cña mçi xe? 6. Mét ca n« xu«i dßng tõ A ®Õn B c¸ch nhau 100 km. Cïng lóc ®ã mét bÌ nøa tr«i tù do tõ A ®Õn B. Ca n« ®Õn B th× quay l¹i A ngay, thêi gian c¶ xu«i dßng vµ ngîc dßng hÕt 15 giê. Trªn ®êng ca n« ngîc vÒ A th× gÆp bÌ nøa t¹i mét ®iÓm c¸ch A lµ 50 km. T×m vËn tèc riªng cña ca n« vµ vËn tèc cña dßng níc? 7. Xe m¸y thø nhÊt ®i trªn qu¶ng ®êng tõ Hµ Néi vÒ Th¸i B×nh hÕt 3 giê 20 phót. Xe m¸y thø hai ®i hÕt 3 giê 40 phót. Mçi giê xe m¸y thø nhÊt ®i nhanh h¬n xe m¸y thø hai 3 km. TÝnh vËn tèc cña mçi xe m¸y vµ qu¶ng ®êng tõ Hµ Néi ®Õn Th¸i B×nh? 8. §o¹n ®êng AB dµi 180 km . Cïng mét lóc xe m¸y ®i tõ A vµ « t« ®i tõ B xe m¸y gÆp « t« t¹i C c¸ch A 80 km. NÕu xe m¸y khëi hµnh sau 54 phót th× chóng gÆp nhau t¹i D c¸ch A lµ 60 km. TÝnh vËn tèc cña « t« vµ xe m¸y ? 9. Mét « t« ®i trªn qu¶ng ®êng dai 520 km. Khi ®i ®îc 240 km th× « t« t¨ng vËn tèc thªm 10 km/h n÷a vµ ®i hÕt qu¶ng ®êng cßn l¹i. T Ýnh vËn tèc ban ®Çu cña « t« biÕt thêi gian ®i hÕt qu¶ng ®êng lµ 8 giê §¸p ¸n: 2. 20 km/h 3. Vận tèc cña « t« thø nhÊt 60 km/h. VËn tèc cña « t« thø hai lµ 50 km/h. 4. 25 km/h 6. VËn tèc cña ca n« lµ 15 km/h. VËn tèc cña dßng níc lµ 5 km/h. D¹ng 3: To¸n lµm chung c«ng viÖc *Nh÷ng kiÕn thøc cÇn nhí: - NÕu mét ®éi lµm xong c«ng viÖc trong x giê th× mét ngµy ®éi ®ã lµm ®îc c«ng viÖc. - Xem toµn bé c«ng viÖc lµ 1 *Bài tập 1. Hai ngêi thî cïng lµm mét c«ng viÖc th× xong trong 18 giê. NÕu ngêi thø nhÊt lµm trong 4 giê, ngêi thø hai lµm trong 7 giê th× ®îc 1/3 c«ng viÖc. Hái mçi ngêi lµm mét m×nh th× mÊt bao l©u sÏ xong c«ng viÖc? 2. §Ó hoµn thµnh mét c«ng viÖc hai tæ ph¶i lµm trong 6 giê. Sau 2 giê lµm chung th× tæ hai ®îc ®iÒu ®i lµm viÖc kh¸c. Tæ mét ®· hoµn thµnh c«ng viÖc cßn l¹i trong 10 giê. Hái nÕu mçi tæ lµm riªng thh× bao l©u xong c«ng viÖc ®ã? 3. Hai ®éi c«ng nh©n cïng ®µo mét con m¬ng. NÕu hä cïng lµm th× trong 2 ngµy sÏ xong c«ng viÖc. NÕu lµm riªng th× ®éi haihoµn thµnh c«ng viÖc nhanh h¬n ®éi mét lµ 3 ngµy. Hái nÕu lµm riªng th× mçi ®éi ph¶i lµm trong bao nhiªu ngµy ®Ó xong c«ng viÖc? 4. Hai chiÕc b×nh rçng gièng nhau cã cïng dung tÝch lµ 375 lÝt. Ë mçi binmhf cã mét vßi níc ch¶y vµo vµ dung lîng níc ch¶y trong mét giê lµ nh nhau. Ngêi ta më cho hai vßi cïng ch¶y vµo b×nh nhng sau 2 giê th× kho¸ vßi thø hai l¹i vµ sau 45 phót míi tiÕp tôc më l¹i. §Ó hai b×nh cïng ®Çy mét lóc ngêi ta ph¶i t¨ng dung lîng vßi thø hai thªm 25 lÝt/giê.TÝnh xem mçi giê vßi thø nhÊt ch¶y ®îc bao nhiªu lÝt níc. 5. Hai ngêi thî cïng lµm mét c«ng viÖc trong 16 giê th× xong. NÕu ngêi thø nhÊt lµm 3 giê, ngêi thø hai lµm 6 giê th× chØ hoµn thµnh ®îc 25% c«ng viÖc. Hái nÕu lµm riªng th× mçi ngêi hoµn thµnh c«ng viÖc trong bao l©u? 6. Hai thî cïng ®µo mét con m¬ng th× sau 2giê 55 phót th× xong viÖc. NÕu hä lµm riªng th× ®éi 1 hoµn thµnh c«ng viÖc nhanh h¬n ®éi 2 lµ 2 giê. Hái nÕu lµm riªng th× mçi ®éi ph¶i lµm trong bao nhiªu giê th× xong c«ng viÖc? 7. Hai ngêi thî cïng s¬n cöa cho mét ng«i nhµ th× 2 ngµy xong viÖc. NÕu ngêi thø nhÊt lµm trong 4 ngµy råi nghØ ngêi thø hai lµm tiÕp trong 1 ngµy n÷a th× xong viÖc. Hái mçi ngêi lµm mét m×nh th× bao l©u xong c«ng viÖc? 8. Theo kế hoạch hai tổ sản xuất 1000 sản phẩm trong một thời gian dự định. Do áp dụng kỹ thuật mới nên tổ I vượt mức kế hoạch 15% và tổ hai vượt mức 17%. Vì vậy trong thời gian quy định cả hai tổ đã sản xuất được tất cả được 1162 sản phẩm. Hỏi số sản phẩm của mỗi tổ là bao nhiêu? 9. Theo kế hoạch hai tổ sản xuất 600 sản phẩm trong một thời gian nhất định. Do áp dụng kỹ thuật mới nên tổ I đã sản xuất vượt mức kế hoạch là 18% và tổ II vượt mức 21%. Vì vậy trong thời gian quy định họ đã hoàn thành vượt mức 120 sản phẩm. Hỏi số sản phẩm được giao của mỗi tổ là bao nhiêu. KÕt qu¶: 1) Ngêi thø nhÊt lµm mét m×nh trong 54 giê. Ngêi thø hai lµm mét m×nh trong 27 giê. 2) Tæ thø nhÊt lµm mét m×nh trong 10 giê. Tæ thø hai lµm mét m×nh trong 15 giê. 3) §éi thø nhÊt lµm mét m×nh trong 6 ngµy. §éi thø hai lµm mét m×nh trong 3 ngµy. 4) Mçi giê vßi thø nhÊt ch¶y ®îc 75 lÝt. D¹ng 4: To¸n cã néi dung h×nh häc *KiÕn thøc cÇn nhí: - DiÖn tÝch h×nh ch÷ nhËt S = x.y ( xlµ chiÒu réng; y lµ chiÒu dµi) - DiÖn tÝch tam gi¸c ( x là chiều cao, y là cạnh đáy tương ứng) - Độ dài cạnh huyền : c2 = a2 + b2 (c là cạnh huyền; a,b là các cạnh góc vuông) *Bài tâp : Bài 1: Một hình chữ nhật có đường chéo bằng 13 m, chiều dài hơn chiều rộng 7 m. Tính diện tích hình chữ nhật đó? Bài 2: Một thửa ruộng hình chữ nhật có chu vi là 250 m. Tính diện tích của thửa ruộng biết rằng chiều dài giảm 3 lần và chiều rộng tăng 2 lần thì chu vi thửa ruộng không thay đổi Bài 3: Một cái sân hình tam giác có diện tích 180 m2 . Tính cạnh đáy của sân biết rằng nếu tăng cạnh đáy 4 m và giảm chiều cao tương ứng 1 m thì diện tích không đổi? Bài 4 : Tính các kích thước của hình chữ nhật có diện tích 40 cm2 , biết rằng nếu tăng mỗi kích thước thêm 3 cm thì diện tích tăng thêm 48 cm2. Bài 5: Cạnh huyền của một tam giác vuông bằng 5 m. Hai cạnh góc vuông hơn kém nhau 1m. Tính các cạnh góc vuông của tam giác? Đáp số: Bài 1: Diện tích hình chữ nhật là 60 m2 Bài 2: Diện tích hình chữ nhật là 3750 m2 Dạng 5: To¸n d©n sè, l·i suÊt, t¨ng trëng *Nh÷ng kiÕn thøc cÇn nhí : + x% = + Dân số tỉnh A năm ngoái là a, tỷ lệ gia tăng dân số là x% thì dân số năm nay của tỉnh A là *Bài tập: Bài 1: Dân số của thành phố Hà Nội sau 2 năm tăng từ 200000 lên 2048288 người. Tính xem hàng năm trung bình dân số tăng bao nhiêu phần trăm. Bài 2: Bác An vay 10 000 000 đồng của ngân hàng để làm kinh tế. Trong một năm đầu bác chưa trả được nên số tiền lãi trong năm đầu được chuyển thành vốn để tính lãi năm sau. Sau 2 năm bác An phải trả là 11 881 000 đồng. Hỏi lãi suất cho vay là bao nhiêu phần trăm trong một năm? Kết quả: Bài 1: Trung bình dân số tăng 1,2%. Bài 2: Lãi suất cho vay là 9% trong 1 năm Bài tập tổng hợp Bài 1: Một phòng họp có 240 ghế được xếp thành các dãy có số ghế bằng nhau. Nếu mỗi dãy bớt đi một ghế thì phải xếp thêm 20 dãy mới hết số ghế. Hỏi phòng họp lúc đầu được xếp thành bao nhiêu dãy ghế. Bài 2: Hai giá sách có 400 cuốn. Nếu chuyển từ giá thứ nhất sang giá thứ hai 30 cuốn thì số sách ở giá thứ nhất bằng số sách ở ngăn thứ hai. Tính số sách ban đầu của mỗi ngăn? Bài 3: Người ta trồng 35 cây dừa trên một thửa đất hình chữ nhật có chiều dài 30 m chiều rộng là 20 m thành những hàng song song cách đều nhau theo cả hai chiều. Hàng cây ngoài cùng trồng ngay trên biên của thửa đất. Hãy tính khoảng cách giữa hai hàng liên tiếp? Bài 4: Hai người nông dân mang 100 quả trứng ra chợ bán. Số trứng của hai người không bằng nhau nhưng số tiền thu được của hai người lại bằng nhau. Một người nói với người kia: “ Nếu số trứng của tôi bằng số trứng của anh thì tôi bán được 15 đồng ”. Người kia nói “ Nếu số trứng của tôi bằng số trứmg của anh tôi chỉ bán được đồng thôi”. Hỏi mỗi người có bao nhiêu quả trứng? Bài 5: Một hợp kim gồm đồng và kẽm trong đó có 5 gam kẽm. Nếu thêm 15 gam kẽm vào hợp kim này thì được một hợp kim mới mà trong đó lượng đồng đã giảm so với lúc đầu là 30%. Tìm khối lượng ban đầu của hợp kim? Kết quả: Bài 1: Có 60 dãy ghế Bài 2: Giá thứ nhất có 180 quyển. Giá thứ hai có 220 quyển. Bài 3: Khoảng cách giữa hai hàng là 5m Bài 4: Người thứ nhất có 40 quả. Người thứ hai có 60 quả. Bài 5: 25 gam hoặc 10 gam. ---------------------------Hết------------------- CHUYÊN ĐỀ 1 : CĂN THỨC BẬC HAI À HẰNG ĐẲNG THỨC A.TÓM TẮT LÝ THUYẾT 1) 2) ( víi A 0 vµ B 0 ) 3) ( víi A 0 vµ B > 0 ) 4) (víi B 0 ) 5) ( víi A 0 vµ B 0 ) ( víi A < 0 vµ B 0 ) 6) ( víi AB 0 vµ B 0 ) 7) ( víi B > 0 ) 8) ( Víi A 0 vµ A B2 ) 9) ( víi A 0, B 0 vµ A B B. BÀI TẬP I.THỰC HIỆN PHÉP TÍNH – RÚT GỌN – BIẾN ĐỔI BIỂU THỨC CHỨA CĂN Bµi 1: T×m §KX§ cña c¸c biÓu thøc sau: a) b) c) d) Bµi 2: Ph©n tÝch thµnh nh©n tö ( víi x 0 ) a) b) x2 - 5 c) x - 4 d) Bµi 3: §a c¸c biÓu thøc sau vÒ d¹ng b×nh ph¬ng. a) b) c) d) Bµi 4 : Thực hiện phép tính. Bài 5/Thực hiện phép tính: Bài 6/Trục căn thức ở mẫu, rút gọn ( víi ) - Bài 7/* Chứng minh các đẳng thức sau: a/ b/ c/ d/ e/ II. RÚT GỌN VÀ TÍNH GIÁ TRỊ BIỂU THỨC Bài 1. Cho biÓu thøc: A = a)T×m §KX§ vµ rót gän A. b) TÝnh gi¸ trÞ biÓu thøc A khi x = . c) T×m tÊt c¶ c¸c gi¸ trÞ cña x ®Ó A < 1. Bài 2. Cho A = với x > 0 , x1 a. Rút gọn A b. Tính A với x = Bài 3. Cho biểu thức với a/ Rút gọn biểu thức A. b/ Tìm x để A < 2. c/ Tìm x nguyên để A nguyên. Bài 4 Cho biÓu thøc: P = Rót gän P T×m a ®Ó P < Cho biểu thức với a > 0 và a a/ Rút gọn biểu thức M. b/ So sánh giá trị của M với 1. Cho biểu thức : A = a) Rút gọn biểu thức sau A. b) Xác định a để biểu thức A > Cho A = với x > 0 , x4 a. Rút gọn A b. Tính A với x = Cho biểu thức: P = (a 0; a 4) a) Rút gọn P. b) Tính giá trị của P với a = 9 Cho biểu thức: N = 1) Rút gọn biểu thức N. 2) Tìm giá trị của a để N = - 2016 Cho biểu thức a. Rút gọn P. b. Tìm x để c. Tìm giá trị nhỏ nhất của P. Cho A = với x > 0 ,x1 Rút gọn A Tính A với a = Cho biểu thức: a) Rút gọn E b) Tìm Max E Cho biÓu thøc: P = T×m §KX§ vµ rót gän P T×m c¸c gi¸ trÞ cña x ®Ó P > 0 T×m x ®Ó P = 6. Cho A = với x0 , x1 Rút gọn A. b.Tìm GTLN của A. Tìm x để A = c.CMR : A Cho A = a. Rút gọn A b. Tìm để Cho A = với a 0 , a9 , a4. a. Rút gọn A. b. Tìm a để A < 1 c. Tìm để Cho A = với x > 0 , x4. Rút gọn A. b. So sánh A với Cho A = với x > 0 , x1 a. Rút gọn A b. Tính A với x = Cho A = với x0 , x9 a. Rút gọn A b. Tìm x để A < - Cho A = với x0 , x1 a. Rút gọn A b. Tính A với x = c . CMR : A CHUYÊN ĐỀ 2: HÀM SỐ BẬC NHẤT- BẬC HAI- HỆ PHƯƠNG TRÌNH I.HÀM SỐ BẬC NHẤT 1. Lý thuyết 1/Hµm sè y = ax + b lµ bËc nhÊt ó a 2/ a) Tính chất : Hµm số xác định với mọi giá trị của x trên R ®ång biÕn khi a > 0 vµ nghÞch biÕn khi a < 0). b) Đồ thị của h/s y = ax + b (a 0) là một đường thẳng luôn cắt trục tung tại điểm có tung độ là b, song song với đường thẳng y = ax nếu a 0 và trùng với đt y = ax với b = 0. 3/ C¸ch t×m giao ®iÓm cña (d) víi hai trôc to¹ ®é Cho x = 0 => y = b => (d) c¾t trôc tung t¹i A(0;b) Cho y =0 => x = -b/a => (d) c¾t trôc hoµnh t¹i B( -b/a;0) a gäi lµ hÖ sè gãc, b lµ tung ®é gèc cña (d) 4/ C¸ch vÏ ®å thÞ hµm sè y = ax + b Cho x = 0 => y = b => A (0;b) Cho y =0 => x = -b/a => B( -b/a;0) VÏ ®êng th¼ng AB ta ®îc ®å thÞ hµm sè y = ax + b 5/ (d) ®i qua A(xo; yo) ó yo= axo + b 6/ Gäi lµ gãc t¹o bëi ®êng th¼ng vµ tia Ox. Khi ®ã: lµ gãc nhän khi a > 0, lµ gãc tï khi a < 0 7/ (d) c¾t (d’) ó a a’ (d) vu«ng gãc (d’) ó a. a’ = -1 (d) trïng (d’) ó (d)//(d’) 8/ (d) c¾t trôc hoµnh t¹i ®iÓm cã hoµnh ®é là a ó (d) ®i qua A(a; 0) 9/ (d) c¾t trôc tung t¹i ®iÓm cã tung ®é b ó (d) ®i qua B(0; b) 10/ Cách tìm to¹ ®é giao ®iÓm cña (d) vµ (d’): Giải ph¬ng tr×nh HĐGĐ: ax + b = a’x + b’ Tìm được x. Thay giá trị của x vào (d) hoặc (d’) ta tìm được y => A(x; y) là TĐGĐ của (d) vµ (d’). 2. Bài tập Bµi 1 : Cho hµm sè y = (m + 5)x+ 2m – 10 Víi gi¸ trÞ nµo cña m th× y lµ hµm sè bËc nhÊt Víi gi¸ trÞ nµo cña m th× hµm sè ®ång biÕn. T×m m ®Ó ®å thÞ hµm sè ®i qua ®iÓm A(2; 3) T×m m ®Ó ®å thÞ c¾t trôc tung t¹i ®iÓm cã tung ®é b»ng 9. T×m m ®Ó ®å thÞ ®i qua ®iÓm 10 trªn trôc hoµnh . T×m m ®Ó ®å thÞ hµm sè song song víi ®å thÞ hµm sè y = 2x -1 Chøng minh ®å thÞ hµm sè lu«n ®i qua 1 ®iÓm cè ®Þnh víi mäi m. T×m m ®Ó kho¶ng c¸ch tõ O tíi ®å thÞ hµm sè lµ lín nhÊt Bµi 2: Cho ®êng th¼ng y=2mx +3-m-x (d) . X¸c ®Þnh m ®Ó: §êng th¼ng d qua gèc to¹ ®é §êng th¼ng d song song víi ®êng th¼ng 2y- x =5 §êng th¼ng d t¹o víi Ox mét gãc nhän §êng th¼ng d t¹o víi Ox mét gãc tï §êng th¼ng d c¾t Ox t¹i ®iÓm cã hoµnh ®é 2 §êng th¼ng d c¾t ®å thÞ Hs y= 2x – 3 t¹i mét ®iÓm cã hoµnh ®é lµ 2 §êng th¼ng d c¾t ®å thÞ Hs y= -x +7 t¹i mét ®iÓm cã tung ®é y = 4 §êng th¼ng d ®i qua giao ®iÓm cña hai ®êng th¶ng 2x -3y=-8 vµ y= -x+1 Bµi 3: Cho hµm sè y = (m – 2)x + m + 3. 1) T×m ®iÒu kiÖn cña m ®Ó hµm sè lu«n nghÞch biÕn. 2) T×m m ®Ó ®å thÞ cña hµm sè c¾t trôc hoµnh t¹i ®iÓm cã hoµnh ®é b»ng 3. 3) T×m m ®Ó ®å thÞ cña hµm sè trªn vµ c¸c ®å thÞ cña c¸c hµm sè y = -x + 2 ; y = 2x – 1 ®ång quy. Bµi 4. Cho hµm sè y = (m – 1)x + m + 3. 1) T×m gi¸ trÞ cña m ®Ó ®å thÞ cña hµm sè song song víi ®å thÞ hµm sè y = -2x + 1. 2) T×m gi¸ trÞ cña m ®Ó ®å thÞ cña hµm sè ®i qua ®iÓm (1 ; -4). 3) T×m ®iÓm cè ®Þnh mµ ®å thÞ cña hµm sè lu«n ®i qua víi mäi m. 4) T×m gi¸ trÞ cña m ®Ó ®å thÞ cña hµm sè t¹o víi trôc tung vµ trôc hoµnh mét tam gi¸c cã diÖn tÝch b»ng 1 (®vdt). Bµi 5. Cho hai ®iÓm A(1 ; 1), B(2 ; -1). 1) ViÕt ph¬ng tr×nh ®êng th¼ng AB. 2) T×m c¸c gi¸ trÞ cña m ®Ó ®êng th¼ng y = (m2 – 3m)x + m2 – 2m + 2 song song víi ®êng th¼ng AB ®ång thêi ®i qua ®iÓm C(0 ; 2). Bµi 6. Trªn mÆt ph¼ng täa ®é cho hai ®iÓm vµ . ViÕt ph¬ng tr×nh ®êng th¼ng (d) ®i qua ®iÓm C vµ song song víi ®êng th¼ng . X¸c ®Þnh täa ®é giao ®iÓm A cña ®êng th¼ng (d) víi trôc hoµnh Ox. X¸c ®Þnh c¸c hÖ sè a vµ b biÕt ®å thÞ hµm sè y = ax + b ®i qua 2 ®iÓm B vµ C. TÝnh gãc t¹o bëi ®êng th¼ng BC vµ trôc hoµnh Ox (lµm trßn ®Õn phót). TÝnh chu vi cña tam gi¸c ABC (®¬n vÞ ®o trªn c¸c trôc täa ®é lµ xentimÐt) (kÕt qu¶ lµm trßn ®Õn ch÷ sè thËp ph©n thø nhÊt). Bµi 7 1) Hµm sè y= -2x +3 ®ång biÕn hay nghÞch biÕn ? 2) T×m to¹ ®é c¸c giao ®iÓm cña ®êng th¼ng y=-2x+3 víi c¸c trôc Ox ,Oy. II. VẼ ĐỒ THỊ & TÌM TỌA ĐỘ GIAO ĐIỂM CỦA (P): y = ax2 VÀ (d): y = ax + b (a 0) 1. KIẾN THỨC CẦN NHỚ 1.Hàm số y = ax2(a0): Hàm số y = ax2(a0) có những tính chất sau: Nếu a > 0 thì hàm số đồng biến khi x > 0 và nghịch biến khi x < 0. Nếu a 0. Đồ thị của hàm số y = ax2(a0): Là một Parabol (P) với đỉnh là gốc tọa độ 0 và nhận trục Oy làm trục đối xứng. Nếu a > 0 thì đồ thị nằm phía trên trục hoành. 0 là điểm thấp nhất của đồ thị. Nếu a < 0 thì đồ thị nằm phía dưới trục hoành. 0 là điểm cao nhất của đồ thị. Vẽ đồ thị của hàm số y = ax2 (a0): Lập bảng các giá trị tương ứng của (P). Dựa và bảng giá trị vẽ (P). 2. Tìm giao điểm của hai đồ thị :(P): y = ax2(a0) và (D): y = ax + b: Lập phương trình hoành độ giao điểm của (P) và (D): cho 2 vế phải của 2 hàm số bằng nhau đưa về pt bậc hai dạng ax2 + bx + c = 0. Giải pt hoành độ giao điểm: + Nếu > 0 pt có 2 nghiệm phân biệt (D) cắt (P) tại 2 điểm phân biệt. + Nếu = 0 pt có nghiệm kép (D) và (P) tiếp xúc nhau. + Nếu < 0 pt vô nghiệm (D) và (P) không giao nhau. 3. Xác định số giao điểm của hai đồ thị :(P): y = ax2(a0) và (Dm) theo tham số m: Lập phương trình hoành độ giao điểm của (P) và (Dm): cho 2 vế phải của 2 hàm số bằng nhau đưa về pt bậc hai dạng ax2 + bx + c = 0. Lập (hoặc) của pt hoành độ giao điểm. Biện luận: + (Dm) cắt (P) tại 2 điểm phân biệt khi > 0 giải bất pt tìm m. + (Dm) tiếp xúc (P) tại 1 điểm = 0 giải pt tìm m. + (Dm) và (P) không giao nhau khi < 0 giải bất pt tìm m. 2. BÀI TẬP VẬN DỤNG Bài tập 1: Cho hai hàm số y = có đồ thị (P) và y = -x + m có đồ thị (Dm). Với m = 4, vẽ (P) và (D4) trên cùng một hệ trục tọa độ vuông góc Oxy. Xác định tọa độ các giao điểm của chúng. Xác định giá trị của m để: (Dm) cắt (P) tại điểm có hoành độ bằng 1. (Dm) cắt (P) tại 2 điểm phân biệt. (Dm) tiếp xúc (P). Xác định tọa độ tiếp điểm. Bài tập 2: Cho hai hàm số y = – 2x2 có đồ thị (P) và y = – 3x + m có đồ thị (Dm). Khi m = 1, vẽ (P) và (D1) trên cùng một hệ trục tọa độ vuông góc Oxy. Xác định tọa độ các giao điểm của chúng. Xác định giá trị của m để: a) (Dm) đi qua một điểm trên (P) tại điểm có hoành độ bằng . b) (Dm) cắt (P) tại 2 điểm phân biệt. c) (Dm) tiếp xúc (P). Xác định tọa độ tiếp điểm. Bài tập 3: Cho hàm số y = – 2x2 có đồ thị (P). Vẽ (P) trên một hệ trục tọa độ vuông góc.. Gọi A() và B(2; 1). Viết phương trình đường thẳng AB. Xác định tọa độ các giao điểm của đường thẳng AB và (P). Tìm điểm trên (P) có tổng hoành độ và tung độ của nó bằng – 6. Bài tập 4: Cho hàm số y = x2 có đồ thị (P) và y = – 2x + có đồ thị (D). Vẽ (P) và (D) trên cùng một hệ trục tọa độ vuông góc. Xác định tọa độ các giao điểm của (P) và (D). Tìm tọa độ những điểm trên (P) thỏa tính chất tổng hoành độ và tung độ của điểm đó bằng – 4. Bài tập 5: Cho hàm số y = x2 có đồ thị (P) và y = x + có đồ thị (D). Vẽ (P) và (D) trên cùng một hệ trục tọa độ vuông góc. Xác định tọa độ các giao điểm của (P) và (D). 3.Gọi A là điểm (P) và B là điểm (D) sao cho Xác định tọa độ của A và B. Bài tập 6: Trong mặt phẳng tọa độ vuông góc Oxy, cho hai điểm A(1; –2) và B(–2; 3). Viết phương trình đường thẳng (d) đi qua A, B. Gọi (P) là đồ thị của hàm số y = –2x2. Vẽ (P) trên mặt phẳng tọa độ đã cho. Xác định tọa độ các giao điểm của (P) và (d). Bài tập 7: Vẽ đồ thị (P) của hàm số y = –2x2 trên mặt phẳng tọa độ vuông góc Oxy. Gọi (D) là đường thẳng đi qua điểm A(–2; –1) và có hệ số góc k. Viết phương trình đường thẳng (D). Tìm k để (D) đi qua B nằm trên (P) biết hoành độ của B là 1. Bài tập 8: Cho hai hàm số y = x2 có đồ thị (P) và y = x + 2 có đồ thị (D). Vẽ (P) và(D) trên cùng một hệ trục tọa độ vuông góc Oxy. Xác định tọa độ các giao điểm của chúng. Gọi A là điểm thuộc (D) có hoành độ bằng 5 và B là điểm thuộc (P) có hoành độ bằng – 2. Xác định tọa độ của A, B. Tìm tọa độ của điểm I nằm trên trục tung sao cho: IA + IB nhỏ nhất. Bài tập 9: Ch
File đính kèm:
- De_cuong_on_thi_vao_lop_10_mon_toan_theo_cau_truc_chuan_nhat.doc