Đề cương ôn tập kiểm tra 45 phút – Hình học 10, kì I
3/ Cho .a/ Tìm tọa độ ; b/ Hãy phân tích theo hai vec tơ và .
4/Cho =(-2; 1); = (3 ; -4) và = (-7; -2).a) Tìm tọa độ ; b) Biểu thị véctơ theo hai véctơ .
5/ Trong mặt phẳng Oxy cho . a) Tìm tọa độ trung điểm I của đoạn thẳng AB, trọng tâm G của tam giác ABC. b) Chứng minh rằng A, B, C là ba đỉnh của một tam giác. c) Tìm tọa độ của điểm D để tứ giác ABCD là hình bình hành.
6/ Trong mặt phẳng tọa độ Oxy, cho tam giác ABC, có A(1;2); B(3;4); C(5;6). Tìm tọa độ trọng tâm G của tam giác ABC? Tìm tọa độ trung điểm M của cạnh BC?
7/ Trong mặt phẳng toạ độ Oxy cho A( 2; 1), B( 1; 1), C( 3; 4); D(5;0). a) Chứng minh A, B, C không thẳng hàng.
8/ Trong mặt phẳng tọa độ Oxy, cho ba điểm A(-4;1); B(0;3); C(1;-2). Tìm tọa độ điểm E sao cho C là trọng tâm tam giác ABE
ĐỀ CƯƠNG ÔN TẬP KIỂM TRA 45’ – HH10 HKI 1/a) Cho tam giác HKG. Có thể xác định được bao nhiêu véctơ (khác vectơ-không) có điểm đầu và điểm cuối là các đỉnh tam giác? b) Cho bốn điểm phân biệt: T, L, G, R. Có thể lập được bao nhiêu véctơ (khác vectơ-không) có điểm đầu và điểm cuối là các điểm trên? c) Cho HBH TLGR, hỏi có thể lập được được bao nhiêu véctơ (khác vectơ-không) có điểm đầu và điểm cuối là các đỉnh của HBH? 2/ a) Cho bốn điểm M, N, P, Q.Chứng minh rằng : b) Cho tam giác ABC, có M, N, P lần lượt là trung điểm của AB, AC, BC. Chứng minh rằng 3/ Cho .a/ Tìm tọa độ ; b/ Hãy phân tích theo hai vec tơ và . 4/Cho =(-2; 1);= (3 ; -4) và = (-7; -2).a) Tìm tọa độ ; b) Biểu thị véctơ theo hai véctơ . 5/ Trong mặt phẳng Oxy cho . a) Tìm tọa độ trung điểm I của đoạn thẳng AB, trọng tâm G của tam giác ABC. b) Chứng minh rằng A, B, C là ba đỉnh của một tam giác. c) Tìm tọa độ của điểm D để tứ giác ABCD là hình bình hành. 6/ Trong mặt phẳng tọa độ Oxy, cho tam giác ABC, có A(1;2); B(3;4); C(5;6). Tìm tọa độ trọng tâm G của tam giác ABC? Tìm tọa độ trung điểm M của cạnh BC? 7/ Trong mặt phẳng toạ độ Oxy cho A( 2; 1), B( 1; 1), C( 3; 4); D(5;0). a) Chứng minh A, B, C không thẳng hàng. 8/ Trong mặt phẳng tọa độ Oxy, cho ba điểm A(-4;1); B(0;3); C(1;-2). Tìm tọa độ điểm E sao cho C là trọng tâm tam giác ABE 9/ Cho DABC có A¢, B¢, C¢ lần lượt là trung điểm của các cạnh BC, CA, AB. a) Chứng minh:. b) Tìm các vectơ bằng 10/ Cho DABC có A(4; 3) , B(-1; 2) , C(3; -2). a) Tìm tọa độ trọng tâm G của DABC. b) Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành. 11/ Cho A(2; 3), B(-1; -1), C(6; 0). a) Chứng minh ba điểm A, B, C không thẳng hàng. b) Tìm tọa độ trọng tâm G của DABC. c) Tìm tọa độ điểm D để tứ giác ABCD là hình bình hành. 12/ Cho A(0; 2) , B(6; 4) , C(1; -1). Tìm toạ độ các điểm M, N, P sao cho: a) Tam giác ABC nhận các điểm M, N, P làm trung điểm của các cạnh. b) Tam giác MNP nhận các điểm A, B, C làm trung điểm của các cạnh. PHƯƠNG PHÁP GIẢI TOÁN: 1/ Chứng minh hai vec tơ bằng nhau: Tứ giác ABCD là HBH và Nếu thì PP tọa độ: : Cho , a) Cho tam giác ABC, có M, N, P lần lượt là trung điểm của AB, AC, BC. Chứng minh rằng . b) Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, CD, AD, BC. Chứng minh: . c) Cho DABC có A¢, B¢, C¢ lần lượt là trung điểm của các cạnh BC, CA, AB. a) Chứng minh:. b) Tìm các vectơ bằng d) Cho hai điểm . a) Tìm toạ độ điểm C sao cho: . b) Tìm điểm D đối xứng của A qua C. c) Tìm điểm M chia đoạn AB theo tỉ số k = –3. e) Cho A(2; 3), B(-1; -1), C(6; 0). Tìm tọa độ điểm D để tứ giác ABCD là hình bình hành 2/ Tìm tổng của hai vec tơ và nhiều vec tơ – chứng minh đẳng thức vec tơ: a) Tổng của hai vectơ · Qui tắc ba điểm: Với ba điểm A, B, C tuỳ ý, ta có: . · Qui tắc hình bình hành: Với ABCD là hình bình hành, ta có: . · Tính chất: ; ; b) Hiệu của hai vectơ · Vectơ đối của là vectơ sao cho . Kí hiệu vectơ đối của là . · Vectơ đối của là . · . · Qui tắc ba điểm: Với ba điểm O, A, B tuỳ ý, ta có: . · Hệ thức trung điểm đoạn thẳng: M là trung điểm của đoạn thẳng AB Û Û (O tuỳ ý). · Hệ thức trọng tâm tam giác: G là trọng tâm DABC Û Û (O tuỳ ý). a) Cho bốn điểm M, N, P, Q.Chứng minh rằng : b) Cho 6 điểm A, B, C, D, E, F. Chứng minh: a) b) . c) Cho tam giác ABC. Các điểm M, N thoả mãn . 1) Tìm điểm I thoả mãn .2) Chứng minh đường thẳng MN luôn đi qua một điểm cố định. d) Cho tứ giác ABCD . Gọi M, N lần lượt là trung điểm của AD, BC. 1) Chứng minh: . 2) Xác định điểm O sao cho: . 3/ Chứng minh ba điểm thẳng hàng, hai đường thẳng song song bằng pp tọa độ và pp hình học phẳng. · Điều kiện để hai vectơ cùng phương: · Điều kiện ba điểm thẳng hàng: A, B, C thẳng hàng Û $k ¹ 0: . 4/ Biểu thị một vec tơ theo hai vec tơ không cùng phương bằng hh phẳng và bằng pp tọa độ + cùng phương với Û $k Î R: . Û (nếu x ¹ 0, y ¹ 0). + Cho hai vectơ không cùng phương và tuỳ ý. Khi đó $! m, n Î R: . * Cho . a) Tìm toạ độ của vectơ . b) Tìm 2 số m, n sao cho: . c) Biểu diễn vectơ . 5/ Toạ độ trên trục Trục toạ độ · Trục toạ độ (trục) là một đường thẳng trên đó đã xác định một điểm gốc O và một vectơ đơn vị . Kí hiệu . · Toạ độ của vectơ trên trục: . · Toạ độ của điểm trên trục: . · Độ dài đại số của vectơ trên trục: . Chú ý: + Nếu thì . Nếu thì . + Nếu A(a), B(b) thì . + Hệ thức Sa–lơ: Với A, B, C tuỳ ý trên trục, ta có: . Trên trục x'Ox cho 2 điểm A, B có tọa độ lần lượt là -2 và 5. a) Tìm tọa độ của . b) Tìm tọa độ trung điểm I của đoạn thẳng AB. c) Tìm tọa độ của điểm M sao cho . d) Tìm tọa độ điểm N sao cho . Trên trục x'Ox cho 2 điểm A, B có tọa độ lần lượt là -3 và 1. a) Tìm tọa độ điểm M sao cho . b) Tìm tọa độ điểm N sao cho . Trên trục x'Ox cho 3 điểm A, B, C có tọa độ lần lượt là a, b, c. a) Tìm tọa độ trung điểm I của AB. b) Tìm tọa độ điểm M sao cho . 6/ Toạ độ trên hệ trục Hệ trục toạ độ · Hệ gồm hai trục toạ độ Ox, Oy vuông góc với nhau. Vectơ đơn vị trên Ox, Oy lần lượt là . O là gốc toạ độ, Ox là trục hoành, Oy là trục tung. · Toạ độ của vectơ đối với hệ trục toạ độ: . · Toạ độ của điểm đối với hệ trục toạ độ: . · Tính chất: Cho , : + + + + . + Toạ độ trung điểm I của đoạn thẳng AB: . + Toạ độ trọng tâm G của tam giác ABC: . + Toạ độ điểm M chia đoạn AB theo tỉ số k ¹ 1: . ( M chia đoạn AB theo tỉ số k Û ). Viết tọa độ của các vectơ sau: a) . b) . Viết dưới dạng khi biết toạ độ của vectơ là: a) . b) . Cho . Tìm toạ độ của các vectơ sau: a) . b) . Cho hai điểm . a) Tìm toạ độ điểm C sao cho: . b) Tìm điểm D đối xứng của A qua C. c) Tìm điểm M chia đoạn AB theo tỉ số k = –3. Cho ba điểm A(–1; 1), B(1; 3), C(–2; 0). Chứng minh ba điểm A, B, C thẳng hàng. Cho ba điểm A(1; -2), B(0; 4), C(3; 2). a) Tìm toạ độ các vectơ . b) Tìm tọa độ trung điểm I của đoạn AB. c) Tìm tọa độ điểm M sao cho: . d) Tìm tọa độ điểm N sao cho: . Cho ba điểm A(1; –2), B(2; 3), C(–1; –2). a) Tìm toạ độ điểm D đối xứng của A qua C. b) Tìm toạ độ điểm E là đỉnh thứ tư của hình bình hành có 3 đỉnh là A, B, C. c) Tìm toạ độ trọng tâm G của tam giác ABC. `
File đính kèm:
- Cac_bai_Luyen_tap.docx