Chuyên đề Dãy các số nguyên phân số viết theo quy luật

Bài 1.5: Chứng minh rằng với mọi ta có:

Bài 1.6: Cho chứng minh:

Bài 1.7: Cho dãy số :

a) Tìm số hạng tổng quát của dãy

b) Gọi S là tổng của 100 số hạng đầu tiên của dãy. Tính S.

 

doc8 trang | Chia sẻ: tuongvi | Lượt xem: 2341 | Lượt tải: 1download
Bạn đang xem nội dung tài liệu Chuyên đề Dãy các số nguyên phân số viết theo quy luật, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
@&
Chuyên đề 1: dãy các số nguyên – phân số viết theo quy luật
= = = = = = = = = = = = &*&*& = = = = = = = = = = = = =
(1). Dãy 1: Sử dụng công thức tổng quát
- - - Chứng minh - - -
@*Bài 1.1: Tính
a) 	b) 
c) 	d) 
*Bài 1.2: Tính:
a) 	b) 
c) 
*Bài 1.3: Tìm số tự nhiên x, thoả mãn:
a) 	b) 
c) 
*Bài 1.4: Chứng minh rằng với mọi số tự nhiên n khác 0 ta đều có:
a) 
b) 
*Bài 1.5: Chứng minh rằng với mọi ta có:
*Bài 1.6: Cho chứng minh: 	
*Bài 1.7: 	Cho dãy số : 
a) Tìm số hạng tổng quát của dãy
b) Gọi S là tổng của 100 số hạng đầu tiên của dãy. Tính S.
*Bài 1.8: 	Cho . Chứng minh 
*Bài 1.9: 	Cho . Chứng minh: 
*Bài 1.10: 	Cho . Chứng minh: 
*Bài 1.11: 	Cho . Chứng minh: 
*Bài 1.12: 	Cho . Chứng minh: 
*Bài 1.13: 	Cho . Chứng minh: 
*Bài 1.14:	 Cho . Chứng minh: 
*Bài 1.15: 	Cho . Tìm phần nguyên của B.
*Bài 1.16: 	Cho . Chứng minh C > 48
*Bài 1.17: 	Cho . Chứng minh 
*Bài1.18: 	Cho . Chứng minh 97 < N < 98.
Mở rộng với tích nhiều thừa số:
Chứng minh:
*Bài 1.19: 	Tính 
*Bài 1.20: 	Cho . Chứng minh 
*Bài 1.21: 	Cho . Chứng minh B < 3
*Bài 1.22: 	Cho . Chứng minh 
*Bài 1.23: 	Chứng minh với mọi n N; n > 1 ta có:
*Bài 1.24:	 Tính 
*Bài 1.25: 	Tính 
Bài 1.26: 	Tính: 
Bài 1. 27: 	Tính: 
Bài 1.28: Cho 
So sánh S với 
v Hướng dẫn:
 Áp dụng vào bài toỏn với m ẻ {2; 2 , …., 2 } và k ẻ { 2005, 2005 , …} ta cú:
………………..
(2). Dãy 2: Dãy luỹ thừa với n tự nhiên.
Bài 2.1: Tính : 
Bài 2.2: Tính: 
Bài 2.3: Tính: 
Bài 2.4: Tính: 
Bài 2.5: Cho . Chứng minh 
Bài 2.6: Cho . Chứng minh B < 100.
Bài 2.7: Cho . Chứng minh: 
Bài 2.8: Cho . Chứng minh: D < 1.
Bài 2.9: Cho . Chứng minh: 
Bài 2.10: Cho với n N*. Chứng minh: 
Bài 2.11: Cho . Chứng minh: 
Bài 2.12: Cho . Chứng minh: 
Bài 2.13: Cho . Chứng minh: I < 7
Bài 2.14: Cho . Chứng minh: 
Bài 2.15: Cho . Chứng minh: L < 4,5.
(3). Dãy 3: Dãy dạng tích các phân số viết theo quy luật:
Bài 3.1: 	Tính: .
Bài 3.2:	 Cho dãy số: 
a) Tìm số hạng tổng quát của dãy.
b) Tính tích của 98 số hạng đầu tiên của dãy.
Bài 3.3: Tính: .
Bài 3.4: Cho . Chứng minh: 
Bài 3.5: Cho . Chứng minh: 
Bài 3.6: Tính: 
Bài 3.7: Tính: .
Bài 3.8: Tính: .
Bài 3.9: Tính: .
Bài 3.10: Tính: 
Bài 3.11: Cho . So sánh K với 
Bài 3.12: So sánh với 
Bài 3.13: So sánh với 
Bài 3.14: Tính: 
Bài 3.15: Tính .
Bài 3.16: Tính: 
Bài 3.17: Tính: 
Bài 3.18: So sánh: và 
Bài 3.19: Cho . Chứng minh V < 2.
Bài 3.20: Cho . Chứng minh: 
Bài 3.21: Cho . Chứng minh: 
Bài 3.22: Tính: 
Bài 3.23: Tính: 
Bài 3.24: Tính: , với n N, 
Bài 3.25: Cho 
và với n N*. Tính 
Bài 3.26: Cho và 
Tính: G + H.
Bài 3.27: Cho với n N.
Chứng minh: 
Bài 3.28: Cho dãy số: 
a) Tìm số hạng tổng quát của dãy.
b) Gọi A là tích của 11 số hạng đầu tiên của dãy. Chứng minh là số tự nhiên.
c) Tìm chữ số tận cùng của 
Bài 3.29: Cho và với n N
a) Chứng minh : là số tự nhiên
b) Tìm n để M là số nguyên tố.
Bài 3.30: Cho 
 với n N
a) Chứng minh : 5A – 2B là số tự nhiên.
b) Chứng minh với mọi số tự nhiên n khác 0 thì 5A – 2B chia hết cho 45.
Bài 3.31: Cho .( với n N ) Chứng minh: A < 3.
(4). Tính hợp lí các biểu thức có nội dung phức tạp:
Bài 4.1: 	Tính:
Bài 4.2: 	Tính: 
Bài 4.3: 	Tính: 
Bài 4.4: 	Tính: 
Bài 4.5: 	Tính: 
Bài 4.6: 	Tính 
Bài 4.7: 	Tính 
Bài 4.8: 	Tính 
Bài 4.9: 	Tính 
Bài 4.10: 	Tính 
Bài 4.11: 	Tính 
Bài 4.12: 	Tính 
Bài 4.13: 	Tính 
Bài 4.14: 	Tính 
Bài 4.15:	 Tính 
Bài 4.16: 	Tính 

File đính kèm:

  • docDay so toan hoc theo chuan ki nang.doc
Giáo án liên quan