Chuyên đề bồi dưỡng học sinh giỏi môn Toán Lớp 8

A. MỤC TIÊU:

* Củng cố, khắc sâu kiến thức về các bài toán chia hết giữa các số, các đa thức

* HS tiếp tục thực hành thành thạo về các bài toán chứng minh chia hết, không chia hết, sốnguyên tố, số chính phương

* Vận dụng thành thạo kỹ năng chứng minh về chia hết, không chia hết vào các bài toán cụ thể

B.KIẾN THỨC VÀ CÁC BÀI TOÁN:

I. Dạng 1: Chứng minh quan hệ chia hết

1. Kiến thức:

* Để chứng minh A(n) chia hết cho một số m ta phân tích A(n) thành nhân tử có một nhân tử làm hoặc bội của m, nếu m là hợp số thì ta lại phân tích nó thành nhân tử có các đoi một nguyên tố cùng nhau, rồi chứng minh A(n) chia hết cho các số đó

* Chú ý:

+ Với k số nguyên liên tiếp bao giờ củng tồn tại một bội của k

+ Khi chứng minh A(n) chia hết cho m ta xét mọi trường hợp về số dư khi chia A(n) cho m

+ Với mọi số nguyên a, b và số tự nhiên n thì:

 

doc111 trang | Chia sẻ: hatranv1 | Lượt xem: 636 | Lượt tải: 0download
Bạn đang xem trước 20 trang mẫu tài liệu Chuyên đề bồi dưỡng học sinh giỏi môn Toán Lớp 8, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Phaân tích ña thöùc bò chia thaønh nhaân töû coù moät thöøa soá laø ña thöùc chia
2. Caùch 2: bieán ñoåi ña thöùc bò chia thaønh moät toång caùc ña thöùc chia heát cho ña thöùc chia
3. Caùch 3: Bieán ñoåi töông ñöông f(x) g(x) f(x) g(x) g(x)
4. caùch 4: Chöùng toû moïi nghieäm cuûa ña thöùc chia ñeàu laø nghieäm cuûa ña thöùc bò chia
II. Ví duï
1.Ví duï 1:
Chöùng minh raèng: x8n + x4n + 1 chia heát cho x2n + xn + 1
Ta coù: x8n + x4n + 1 = x8n + 2x4n + 1 - x4n = (x4n + 1)2 - x4n = (x4n + x2n + 1)( x4n - x2n + 1)
Ta laïi coù: x4n + x2n + 1 = x4n + 2x2n + 1 – x2n = (x2n + xn + 1)( x2n - xn + 1) 
chia heát cho x2n + xn + 1
Vaäy: x8n + x4n + 1 chia heát cho x2n + xn + 1
2. Ví duï 2:
Chöùng minh raèng: x3m + 1 + x3n + 2 + 1 chia heát cho x2 + x + 1 vôùi moïi m, n N
Ta coù: x3m + 1 + x3n + 2 + 1 = x3m + 1 - x + x3n + 2 – x2 + x2 + x + 1
 = x(x3m – 1) + x2(x3n – 1) + (x2 + x + 1)
Vì x3m – 1 vaø x3n – 1 chia heát cho x3 – 1 neân chia heát cho x2 + x + 1
Vaäy: x3m + 1 + x3n + 2 + 1 chia heát cho x2 + x + 1 vôùi moïi m, n N
3. Ví duï 3: Chöùng minh raèng 
f(x) = x99 + x88 + x77 + ... + x11 + 1 chia heát cho g(x) = x9 + x8 + x7 + ....+ x + 1
Ta coù: f(x) – g(x) = x99 – x9 + x88 – x8 + x77 – x7 + ... + x11 – x + 1 – 1
 = x9(x90 – 1) + x8(x80 – 1) + ....+ x(x10 – 1) chia heát cho x10 – 1
Maø x10 – 1 = (x – 1)(x9 + x8 + x7 +...+ x + 1) chia heát cho x9 + x8 + x7 +...+ x + 1
Suy ra f(x) – g(x) chia heát cho g(x) = x9 + x8 + x7 +...+ x + 1
Neân f(x) = x99 + x88 + x77 + ... + x11 + 1 chia heát cho g(x) = x9 + x8 + x7 + ....+ x + 1
4. Ví duï 4: CMR: f(x) = (x2 + x – 1)10 + (x2 - x + 1)10 – 2 chia heát cho g(x) = x2 – x
Ña thöùc g(x) = x2 – x = x(x – 1) coù 2 nghieäm laø x = 0 vaø x = 1
Ta coù f(0) = (-1)10 + 110 – 2 = 0 x = 0 laø nghieäm cuûa f(x) f(x) chöùa thöøa soá x
f(1) = (12 + 1 – 1)10 + (12 – 1 + 1)10 – 2 = 0 x = 1 laø nghieäm cuûa f(x) f(x) chöùa thöøa soá x – 1, maø caùc thöøa soá x vaø x – 1 khoâng coù nhaân töû chung, do ñoù f(x) chia heát cho x(x – 1)
hay f(x) = (x2 + x – 1)10 + (x2 - x + 1)10 – 2 chia heát cho g(x) = x2 – x
5. Ví duï 5: Chöùng minh raèng
a) A = x2 – x9 – x1945 chia heát cho B = x2 – x + 1
b) C = 8x9 – 9x8 + 1 chia heát cho D = (x – 1)2
c) C (x) = (x + 1)2n – x2n – 2x – 1 chia heát cho D(x) = x(x + 1)(2x + 1)
Giaûi
a) A = x2 – x9 – x1945 = (x2 – x + 1) – (x9 + 1) – (x1945 – x)
Ta coù: x2 – x + 1 chia heát cho B = x2 – x + 1
 x9 + 1 chia heát cho x3 + 1 neân chia heát cho B = x2 – x + 1
 x1945 – x = x(x1944 – 1) chia heát cho x3 + 1 (cuøng coù nghieäm laø x = - 1) 
neân chia heát cho B = x2 – x + 1
Vaäy A = x2 – x9 – x1945 chia heát cho B = x2 – x + 1
b) C = 8x9 – 9x8 + 1 = 8x9 – 8 - 9x8 + 9 = 8(x9 – 1) – 9(x8 – 1)
 = 8(x – 1)(x8 + x7 + ...+ 1) – 9(x – 1)(x7 + x6 + ...+ 1)
 = (x – 1)(8x8 – x7 – x6 – x5 – x4 – x3 – x2 – x – 1)
(8x8 – x7 – x6 – x5 – x4 – x3 – x2 – x – 1) chia heát cho x – 1 vì coù toång heä soá baèng 0
suy ra (x – 1)(8x8 – x7 – x6 – x5 – x4 – x3 – x2 – x – 1) chia heát cho (x – 1)2
c) Ña thöùc chia D (x) = x(x + 1)(2x + 1) coù ba nghieäm laø x = 0, x = - 1, x = - 
Ta coù:
C(0) = (0 + 1)2n – 02n – 2.0 – 1 = 0 x = 0 laø nghieäm cuûa C(x)
C(-1) = (-1 + 1)2n – (- 1)2n – 2.(- 1) – 1 = 0 x = - 1 laø nghieäm cuûa C(x)
C(- ) = (- + 1)2n – (-)2n – 2.(- ) – 1 = 0 x = - laø nghieäm cuûa C(x)
Moïi nghieäm cuûa ña thöùc chia laø nghieäm cuûa ña thöùc bò chia ñpcm
6. Ví duï 6: 
Cho f(x) laø ña thöùc coù heä soá nguyeân. Bieát f(0), f(1) laø caùc soá leû. Chöùng minh raèng f(x) khoâng coù nghieäm nguyeân
Giaû söû x = a laø nghieäm nguyeân cuûa f(x) thì f(x) = (x – a). Q(x). Trong ñoù Q(x) laø ña thöùc coù heä soá nguyeân, do ñoù f(0) = - a. Q(0), f(1) = (1 – a). Q(1)
Do f(0) laø soá leû neân a laø soá leû, f(1) laø soá leû neân 1 – a laø soá leû, maø 1 – a laø hieäu cuûa 2 soá leû khoâng theå laø soá leû, maâu thuaån
Vaäy f(x) khoâng coù nghieäm nguyeân
Baøi taäp veà nhaø:
Baøi 1: Tìm soá dö khi
a) x43 chia cho x2 + 1
b) x77 + x55 + x33 + x11 + x + 9 cho x2 + 1
Baøi 2: Tính giaù trò cuûa ña thöùc x4 + 3x3 – 8 taïi x = 2009
Baøi 3: Chöùng minh raèng
a) x50 + x10 + 1 chia heát cho x20 + x10 + 1
b) x10 – 10x + 9 chia heát cho x2 – 2x + 1
c) x4n + 2 + 2x2n + 1 + 1 chia heát cho x2 + 2x + 1
d) (x + 1)4n + 2 + (x – 1)4n + 2 chia heát cho x2 + 1
e) (xn – 1)(xn + 1 – 1) chia heát cho (x + 1)(x – 1)2
CHUYEÂN ÑEÀ 11 – CAÙC BAØI TOAÙN VEÀ BIEÅU THÖÙC HÖÕU TÆ
A. Nhaéc laïi kieán thöùc:
Caùc böôùc ruùt goïn bieåu thöùc höûu tæ
a) Tìm ÑKXÑ: Phaân tích maãu thaønh nhaân töû, cho taát caû caùc nhaân töû khaùc 0
b) Phaân tích töû thaønh nhaân , chia töû vaø maãu cho nhaân töû chung 
B. Baøi taäp:
Baøi 1: Cho bieåu thöùc A = 
a) Ruùt goïn A
b) tìm x ñeå A = 0
c) Tìm giaù trò cuûa A khi 
Giaûi
a)Ñkxñ : 
 x4 – 10x2 + 9 0 [(x2)2 – x2] – (9x2 – 9) 0 x2(x2 – 1) – 9(x2 – 1) 0
(x2 – 1)(x2 – 9) 0 (x – 1)(x + 1)(x – 3)(x + 3) 0 
Töû : x4 – 5x2 + 4 = [(x2)2 – x2] – (x2 – 4) = x2(x2 – 1) – 4(x2 – 1) 
= (x2 – 1)(x2 – 4) = (x – 1)(x + 1)(x – 2)(x + 2) 
Vôùi x 1; x 3 thì 
A = 
b) A = 0 = 0 (x – 2)(x + 2) = 0 x = 2
c) 
* Vôùi x = 4 thì A = 
* Vôùi x = - 3 thì A khoâng xaùc ñònh
2. Baøi 2:
Cho bieåu thöùc B = 
a) Ruùt goïn B
b) Tìm x ñeå B > 0
Giaûi 
a) Phaân tích maãu: 3x3 – 19x2 + 33x – 9 = (3x3 – 9x2) – (10x2 – 30x) + (3x – 9) 
= (x – 3)(3x2 – 10x + 3) = (x – 3)[(3x2 – 9x) – (x – 3)] = (x – 3)2(3x – 1)
Ñkxñ: (x – 3)2(3x – 1) 0 x 3 vaø x 
b) Phaân tích töû, ta coù:
 2x3 – 7x2 – 12x + 45 = (2x3 – 6x2 ) - (x2 - 3x) – (15x - 45) = (x – 3)(2x2 – x – 15)
= (x – 3)[(2x2 – 6x) + (5x – 15)] = (x – 3)2(2x + 5)
Vôùi x 3 vaø x 
Thì B = = 
c) B > 0 > 0 
3. Baøi 3 
Cho bieåu thöùc C = 
a) Ruùt goïn bieåu thöùc C
b) Tìm giaù trò nguyeân cuûa x ñeå giaù trò cuûa bieåu thöùc B laø soá nguyeân
Giaûi
a) Ñkxñ: x 1
C = 
b) B coù giaù trò nguyeân khi x laø soá nguyeân thì coù giaù trò nguyeân 
 2x – 1 laø Ö(2) 
Ñoái chieáu Ñkxñ thì chæ coù x = 0 thoaû maõn
4. Baøi 4
Cho bieåu thöùc D = 
a) Ruùt goïn bieåu thöùc D
b) Tìm x nguyeân ñeå D coù giaù trò nguyeân
c) Tìm giaù trò cuûa D khi x = 6
Giaûi
a) Neáu x + 2 > 0 thì = x + 2 neân 
D = = 
Neáu x + 2 < 0 thì = - (x + 2) neân
D = = 
Neáu x + 2 = 0 x = -2 thì bieåu thöùc D khoâng xaùc ñònh
b) Ñeå D coù giaù trò nguyeân thì hoaëc coù giaù trò nguyeân
+) coù giaù trò nguyeân 
Vì x(x – 1) laø tích cuûa hai soá nguyeân lieân tieáp neân chia heát cho 2 vôùi moïi x > - 2
+) coù giaù trò nguyeân 
c) Khia x = 6 x > - 2 neân D = = 
Baøi taäp veà nhaø
Baøi 1:
Cho bieåu thöùc A = 
a) Ruùt goïn A
b) Tìm x ñeå A = 0; A > 0
Baøi 2:
Cho bieåu thöùc B = 
a) Ruùt goïn B
b) Tìm soá nguyeân y ñeå coù giaù trò nguyeân
c) Tìm soá nguyeân y ñeå B 1
CHUYEÂN ÑEÀ 12 – CAÙC BAØI TOAÙN VEÀ BIEÅU THÖÙC (TIEÁP)
* Daïng 2: Caùc bieåu thöùc coù tính quy luaät
Baøi 1: Ruùt goïn caùc bieåu thöùc
a) A = 
Phöông phaùp: Xuaát phaùt töø haïng töû cuoái ñeå tìm ra quy luaät
Ta coù = Neân
A = 
b) B = 
Ta coù Neân
B = 
c) C = = 
 = 50.
d) D = = 
 = 
Baøi 2: 
a) Cho A = ; B = . Tính 
Ta coù
A = 
 = = n
b) A = ; B = 1 + 
Tính A : B
Giaûi
A = 
Baøi taäp veà nhaø
Ruùt goïn caùc bieåu thöùc sau:
a) b) 
c) 
* Daïng 3: Ruùt goïn; tính giaù trò bieåu thöùc thoaû maõn ñieàu kieän cuûa bieán
Baøi 1: Cho . TÝnh gi¸ trÞ cña c¸c biÓu thøc sau :
 a) ; b) ; c) ; d) .
Lêi gi¶i
 a) ;
 b) ;
 c) ;
 d) Þ D = 7.18 – 3 = 123.
Baøi 2: Cho (1); (2). 
 Tính giaù trò bieåu thöùc D = 
Töø (1) suy ra bcx + acy + abz = 0 (3)
Töø (2) suy ra 
 (4)
Thay (3) vaøo (4) ta coù D = 4 – 2.0 = 4
Baøi 3
a) Cho abc = 2; ruùt goïn bieåu thöùc A = 
Ta coù : 
A = 
 = 
b) Cho a + b + c = 0; ruùt goïn bieåu thöùc B = 
Töø a + b + c = 0 a = -(b + c) a2 = b2 + c2 + 2bc a2 - b2 - c2 = 2bc
Töông töï ta coù: b2 - a2 - c2 = 2ac ; c2 - b2 - a2 = 2ab (Hoaùn vò voøng quanh), neân
B = (1)
a + b + c = 0 -a = (b + c) -a3 = b3 + c3 + 3bc(b + c) -a3 = b3 + c3 – 3abc 
 a3 + b3 + c3 = 3abc (2)
Thay (2) vaøo (1) ta coù B = (Vì abc 0)
c) Cho a, b, c töøng ñoâi moät khaùc nhau thoaû maõn: (a + b + c)2 = a2 + b2 + c2
Ruùt goïn bieåu thöùc C = 
Töø (a + b + c)2 = a2 + b2 + c2 ab + ac + bc = 0
 a2 + 2bc = a2 + 2bc – (ab + ac + bc) = a2 – ab + bc – ac = (a – b)(a – c)
Töông töï: b2 + 2 ac = (b – a)(b – c) ; c2 + 2ab = (c – a)(c – b)
C = 
 = 
* Daïng 4: Chöùng minh ñaúng thöùc thoaû maõn ñieàu kieän cuûa bieán
1. Baøi 1: Cho (1); (2).
Chöùng minh raèng: a + b + c = abc 
Töø (1) suy ra 
 a + b + c = abc
2. Baøi 2: Cho a, b, c ≠ 0 vµ a + b + c ≠ 0 tháa m·n ®iÒu kiÖn . 
Chøng minh r»ng trong ba sè a, b, c cã hai sè ®èi nhau. 
Tõ ®ã suy ra r»ng :.
 Ta cã : Û Û 
Tõ ®ã suy ra : 
 Þ .
3. Baøi 3: Cho (1)
chöùng minh raèng : trong ba soá a, b, c toàn taïi hai soá baèng nhau
Töø (1) 
 (c – b)(a2 – ac = ab + bc) = 0 (c – b)(a – b)( a – c) = 0 ñpcm
4. Baøi 4: Cho (a2 – bc)(b – abc) = (b2 – ac)(a – abc); abc 0 vaø a b
 Chöùng minh raèng: 
Töø GT a2b – b2c - a3bc + ab2c2 = ab2 – a2c – ab3c + a2bc2
 (a2b – ab2) + (a2c – b2c) = abc2(a – b) + abc(a - b)(a + b)
 (a – b)(ab + ac + bc) = abc(a – b)(a + b + c) 
5. Baøi 5: Cho a + b + c = x + y + z = ; Chöùng minh raèng: ax2 + by2 + cz2 = 0
Töø x + y + z = 0 x2 = (y + z)2 ; y2 = (x + z)2 ; z2 = (y + x)2
 ax2 + by2 + cz2 = a(y + z)2 + b(x + z)2 + c (y + x)2 = 
 = (b + c)x2 + (a + c)y2 + (a + b)z2 + 2(ayz + bxz + cxy) (1)
Töø a + b + c = 0 - a = b + c; - b = a + c; - c = a + b (2)
Töø ayz + bxz + cxy = 0 (3). Thay (2), (3) vaøo (1); ta coù: 
ax2 + by2 + cz2 = -( ax2 + by2 + cz2 ) ax2 + by2 + cz2 = 0
6. Baøi 6: Cho ; chöùng minh: 
Töø 
 (1) (Nhaân hai veá vôùi )
Töông töï, ta coù: (2) ; (3)
Coäng töøng veá (1), (2) vaø (3) ta coù ñpcm
7. Baøi 7: 
Cho a + b + c = 0; chöùng minh: = 9 (1)
Ñaët 
(1) 
Ta coù: (2)
Ta laïi coù: 
= (3)
Töông töï, ta coù: (4) ; (5)
Thay (3), (4) vaø (5) vaøo (2) ta coù: 
 + = 3 + (a3 + b3 + c3 ) (6)
Töø a + b + c = 0 a3 + b3 + c3 = 3abc (7) ?
Thay (7) vaøo (6) ta coù: + . 3abc = 3 + 6 = 9
Baøi taäp veà nhaø:
1) cho ; tính giaù trò bieåu thöùc A = 
HD: A = ; vaän duïng a + b + c = 0 a3 + b3 + c3 = 3abc
2) Cho a3 + b3 + c3 = 3abc ; Tính giaù trò bieåu thöùc A = 
3) Cho x + y + z = 0; chöùng minh raèng: 
4) Cho a + b + c = a2 + b2 + c2 = 1; . Chöùng minh xy + yz + xz = 0
CHUYEÂN ÑEÀ 13 – CAÙC BAØI TOAÙN VEÀ TAM GIAÙC ÑOÀNG DAÏNG
A. Kieán thöùc:
* Tam giaùc ñoàng daïng:
a) tröôøng hôïp thöù nhaát: (c.c.c)
ABC A’B’C’ 
b) tröôøng hôïp thöù nhaát: (c.g.c)
ABC A’B’C’ ; 
c. Tröôøng hôïp ñoàng daïng thöù ba (g.g)
ABC A’B’C’ ; 
AH; A’H’laø hai ñöôøng cao töông öùng thì: = k (Tæ soá ñoàng daïng); = K2
B. Baøi taäp aùp duïng
Baøi 1:
Cho ABC coù, AB = 8 cm, BC = 10 cm. 
a)Tính AC
b)Neáu ba caïnh cuûa tam giaùc treân laø ba soá töï nhieân lieân tieáp thì moãi caïnh laø bao nhieâu?
Giaûi
Caùch 1:
Treân tia ñoái cuûa tia BA laáy ñieåm E sao cho:BD = BC
ACD ABC (g.g) 
 = AB(AB + BC) 
= 8(10 + 8) = 144 AC = 12 cm
Caùch 2:
Veõ tia phaân giaùc BE cuûa ABE ACB
= 8(8 + 10) = 144
 AC = 12 cm
b) Goïi AC = b, AB = a, BC = c thì töø caâu a ta coù b2 = a(a + c) (1)
Vì b > aneân coù theå b = a + 1 hoaëc b = a + 2
+ Neáu b = a + 1 thì (a + 1)2 = a2 + ac 2a + 1 = ac a(c – 2) = 1
a = 1; b = 2; c = 3(loaïi)
+ Neáu b = a + 2 thì a(c – 4) = 4
- Vôùi a = 1 thì c = 8 (loaïi)
- Vôùi a = 2 thì c = 6 (loaïi)
- vôùi a = 4 thì c = 6 ; b = 5
Vaäy a = 4; b = 5; c = 6
Baøi 2:
Cho ABC caân taïi A, ñöôøng phaân giaùc BD; tính BD 
bieát BC = 5 cm; AC = 20 cm
Giaûi
Ta coù CD = 4 cm vaø BC = 5 cm
Baøi toaùn trôû veà baøi 1 
Baøi 3:
Cho ABC caân taïi A vaø O laø trung ñieåm cuûa BC. Moät ñieåm O di ñoäng treân AB, laáy ñieåm E treân AC sao cho . Chöùng minh raèng
a) DBOOCE
b) DOE DBOOCE
c) DO, EO laàn löôït laø phaân giaùc cuûa caùc goùc BDE, CED
d) khoaûng caùch töø O ñeán ñoaïn ED khoâng ñoåi khi D di ñoäng treân AB
Giaûi
a) Töø vaø (gt) DBOOCE
b) Töø caâu a suy ra (1)
 Vì B, O ,C thaúng haøng neân (2)
trong tam giaùc EOC thì (3)
Töø (1), (2), (3) suy ra 
DOE vaø DBO coù (Do DBOOCE) 
vaø (Do OC = OB) vaø 
neân DOE DBOOCE
c) Töø caâu b suy ra DO laø phaân giaùc cuûa caùc goùc BDE
Cuûng töø caâu b suy ra EO laø phaân giaùc cuûa caùc goùc CED
c) Goïi OH, OI laø khoaûng caùch töø O ñeán DE, CE thì OH = OI, maø O coá ñònh neân OH khoâng ñoåi OI khoâng ñoåi khi D di ñoäng treân AB
Baøi 4: 
Cho ABC caân taïi A, coù BC = 2a, M laø trung ñieåm BC, laáy D, E thuoäc AB, AC sao cho 
a) Chöùng minh tích BD. CE khoâng ñoåi
b)Chöùng minh DM laø tia phaân giaùc cuûa 
c) Tính chu vi cuûa AED neáu ABC laø tam giaùc ñeàu
Giaûi
a) Ta coù , maø (gt)
neân , keát hôïp vôùi (ABC caân taïi A)
suy ra BDM CME (g.g) 
 khoâng ñoåi
b) BDM CME 
(do BM = CM) DME DBM (c.g.c) hay DM laø tia phaân giaùc cuûa 
c) chöùng minh töông töï ta coù EM laø tia phaân giaùc cuûa 
keû MH CE ,MI DE, MK DB thì MH = MI = MK DKM = DIM 
DK =DI EIM = EHM EI = EH
Chu vi AED laø PAED = AD + DE + EA = AK +AH = 2AH (Vì AH = AK)
ABC laø tam giaùc ñeàu neân suy ra CME cuûng laø tam giaùc ñeàu CH = 
 AH = 1,5a PAED = 2 AH = 2. 1,5 a = 3a
Baøi 5: 
Cho tam giaùc ABC, trung tuyeán AM. Qua ñieåm D thuoäc caïnh BC, veõ ñöôøng thaúng song song vôùi AM, caét AB, AC taïi E vaø F
a) chöùng minh DE + DF khoâng ñoåi khi D di ñoäng treân BC
b) Qua A veõ ñöôøng thaúng song song vôùi BC, caét FE taïi K. Chöùng minh raèng K laø trung ñieåm cuûa FE
Giaûi
a) DE // AM (1)
 DF // AM (2)
Töø (1) vaø (2) suy ra 
DE + DF = = khoâng ñoåi
b) AK // BC suy ra FKA AMC (g.g) (3)
 (2)
(Vì CM = BM)
Töø (1) vaø (2) suy ra FK = EK hay K laø trung ñieåm cuûa FE
Baøi 6: Cho hình thoi ABCD caïnh a coù , moät ñöôøng thaúng baát kyø qua C caét tia ñoái cuûa caùc tia BA, DA taïi M, N
a) Chöùng minh raèng tích BM. DN coù giaù trò khoâng ñoåi
b) Goïi K laø giao ñieåm cuûa BN vaø DM. Tính soá ño cuûa goùc BKD
Giaûi
a) BC // AN (1)
 CD// AM (2)
Töø (1) vaø (2) suy ra 
b) MBD vaøBDN coù= 1200
 (Do ABCD laø hình thoi coù neân AB = BC = CD = DA) MBD BDN
Suy ra . MBD vaøBKD coù vaø neân 
Baøi 7: 
Cho hình bình haønh ABCD coù ñöôøng cheùo lôùn AC,tia Dx caét SC, AB, BC laàn löôït taïi I, M, N. Veõ CE vuoâng goùc vôùi AB, CF vuoâng goùc vôùi AD, BG vuoâng goùc vôùi AC. Goïi K laø ñieåm ñoái xöùng vôùi D qua I. Chöùng minh raèng
a) IM. IN = ID2
b) 
c) AB. AE + AD. AF = AC2
Giaûi
a) Töø AD // CM (1)
Töø CD // AN (2)
Töø (1) vaø (2) suy ra = hay ID2 = IM. IN
b) Ta coù (3)
Töø ID = IK vaø ID2 = IM. IN suy ra IK2 = IM. IN 
 (4)
Töø (3) vaø (4) suy ra 
c) Ta coù AGB AEC AB. AE = AG(AG + CG) (5)
CGB AFC (vì CB = AD) 
AF . AD = AC. CG AF . AD = (AG + CG) .CG (6)
Coäng (5) vaø (6) veá theo veá ta coù: AB. AE + AF. AD = (AG + CG) .AG + (AG + CG) .CG
 AB. AE + AF. AD = AG2 +2.AG.CG + CG2 = (AG + CG)2 = AC2
Vaäy: AB. AE + AD. AF = AC2
Baøi taäp veà nhaø
Baøi 1
Cho Hình bình haønh ABCD, moät ñöôøng thaúng caét AB, AD, AC laàn löôït taïi E, F, G
Chöùng minh: 
HD: Keû DM // FE, BN // FE (M, N thuoäc AC)
Baøi 2:
Qua ñænh C cuûa hình bình haønh ABCD, keû ñöôøng thaúng caét BD, AB, AD ôû E, G, F
 chöùng minh:
a) DE2 = . BE2
b) CE2 = FE. GE
(Gôïi yù: Xeùt caùc tam giaùc DFE vaø BCE, DEC vaø BEG)
Baøi 3
Cho tam giaùc ABC vuoâng taïi A, ñöôøng cao AH, trung tuyeán BM, phaân giaùc CD caét nhau taïi moät ñieåm. Chöùng minh raèng
a) 
b) BH = AC
CHUYEÂN ÑEÀ 14 – PHÖÔNG TRÌNH BAÄC CAO
A.Muïc tieâu:
* Cuûng coá, oân taäp kieán thöùc vaø kyõ naêng giaûi caùc Pt baäc cao baèng caùch phaân tích thaønh nhaân töû
* Khaéc saâu kyõ naêng phaân tích ña thöùc thaønh nhaân töû vaø kyõ naêng giaûi Pt
B. Kieán thöùc vaø baøi taäp:
I. Phöông phaùp:
* Caùch 1: Ñeå giaûi caùc Pt baäc cao, ta bieán ñoåi, ruùt goïn ñeå döa Pt veà daïng Pt coù veá traùi laø moät ña thöùc baäc cao, veá phaûi baèng 0, vaän duïng caùc phöông phaùp phaân tích ña thöùc thaønh nhaân töû ñeå ñöa Pt veà daïng pt tích ñeå giaûi
* Caùch 2: Ñaët aån phuï
II. Caùc ví duï:
1.Ví duï 1: Giaûi Pt
 a) (x + 1)2(x + 2) + (x – 1)2(x – 2) = 12
 ...2x3 + 10x = 12 x3 + 5x – 6 = 0 (x3 – 1) + (5x – 5) (x – 1)(x2 + x + 6) = 0
 (Vì voâ nghieäm)
b) x4 + x2 + 6x – 8 = 0 (1)
Veá phaûi cuûa Pt laø moät ña thöùc coù toång caùc heä soá baèng 0, neân coù moät nghieäm x = 1 neân coù nhaân töû laø x – 1, ta coù
(1) (x4 – x3) + (x3 – x2) + (2x2 – 2x) + (8x – 8) = 0
 ... (x – 1)(x3 + x2 + 2x + 8) (x – 1)[(x3 + 2x2) – (x2 + 2x) + (4x – 8) ] = 0
 (x – 1)[x2(x + 2) – x(x + 2) + 4(x + 2) = 0 (x – 1)(x + 2)(x2 – x + 4) = 0 ....
c) (x – 1)3 + (2x + 3)3 = 27x3 + 8 
 x3 – 3x2 + 3x – 1 + 8x3 + 36x2 + 54x + 27 – 27x3 – 8 = 0
 - 18x3 + 33x2 + 57 x + 18 = 0 6x3 - 11x2 - 19x - 6 = 0 (2)
Ta thaáy Pt coù moät nghieäm x = 3, neân veá traùi coù nhaân töû x – 3:
(2) (6x3 – 18x2) + (7x2 – 21x) + (2x – 6) = 0
6x2(x – 3) + 7x(x – 3) + 2(x – 3) = 0 (x – 3)(6x2 + 7x + 2) = 0
(x – 3)[(6x2 + 3x) + (4x + 2)] = 0 (x – 3)[3x(2x + 1) + 2(2x + 1)] = 0
 (x – 3)(2x + 1)(3x + 2) .....
d) (x2 + 5x)2 – 2(x2 + 5x) = 24 [(x2 + 5x)2 – 2(x2 + 5x) + 1] – 25 = 0
(x2 + 5x - 1)2 – 25 = 0 (x2 + 5x - 1 + 5)( (x2 + 5x - 1 – 5) = 0
(x2 + 5x + 4) (x2 + 5x – 6) = 0 [(x2 + x) +(4x + 4)][(x2 – x) + (6x – 6)] = 0
(x + 1)(x + 4)(x – 1)(x + 6) = 0 ....
e) (x2 + x + 1)2 = 3(x4 + x2 + 1) (x2 + x + 1)2 - 3(x4 + x2 + 1) = 0
 (x2 + x + 1)2 – 3(x2 + x + 1)( x2 - x + 1) = 0 
 ( x2 + x + 1)[ x2 + x + 1 – 3(x2 - x + 1)] = 0 ( x2 + x + 1)( -2x2 + 4x - 2) = 0
 (x2 + x + 1)(x2 – 2x + 1) = 0 ( x2 + x + 1)(x – 1)2 = 0...
f) x5 = x4 + x3 + x2 + x + 2 (x5 – 1) – (x4 + x3 + x2 + x + 1) = 0 
 (x – 1) (x4 + x3 + x2 + x + 1) – (x4 + x3 + x2 + x + 1) = 0
 (x – 2) (x4 + x3 + x2 + x + 1) = 0 
+) x – 2 = 0 x = 2
+) x4 + x3 + x2 + x + 1 = 0 (x4 + x3) + (x + 1) + x2 = 0 (x + 1)(x3 + 1) + x2 = 0
 (x + 1)2(x2 – x + 1) + x2 = 0 (x + 1)2 [(x2 – 2.x. + ) + ] + x2 = 0
 (x + 1)2 + x2 = 0 Voâ nghieäm vì (x + 1)2 0 nhöng khoâng xaåy ra daáu baèng
Baøi 2:
a) (x2 + x - 2)( x2 + x – 3) = 12 (x2 + x – 2)[( x2 + x – 2) – 1] – 12 = 0
 (x2 + x – 2)2 – (x2 + x – 2) – 12 = 0 
Ñaët x2 + x – 2 = y Thì
(x2 + x – 2)2 – (x2 + x – 2) – 12 = 0 y2 – y – 12 = 0 (y – 4)(y + 3) = 0
* y – 4 = 0 x2 + x – 2 – 4 = 0 x2 + x – 6 = 0 (x2 + 3x) – (2x + 6) = 0
 (x + 3)(x – 2) = 0....
* y + 3 = 0 x2 + x – 2 + 3 = 0 x2 + x + 1 = 0 (voâ nghieäm)
b) (x – 4)( x – 5)( x – 6)( x – 7) = 1680 (x2 – 11x + 28)( x2 – 11x + 30) = 1680
Ñaët x2 – 11x + 29 = y , ta coù:
(x2 – 11x + 28)( x2 – 11x + 30) = 1680 (y + 1)(y – 1) = 1680 y2 = 1681 y = 41
y = 41 x2 – 11x + 29 = 41 x2 – 11x – 12 = 0 (x2 – x) + (12x – 12) = 0
 (x – 1)(x + 12) = 0.....
* y = - 41 x2 – 11x + 29 = - 41 x2 – 11x + 70 = 0 (x2 – 2x. +)+ = 0
c) (x2 – 6x + 9)2 – 15(x2 – 6x + 10) = 1 (3)
Ñaët x2 – 6x + 9 = (x – 3)2 = y 0, ta coù
(3) y2 – 15(y + 1) – 1 = 0 y2 – 15y – 16 = 0 (y + 1)(y – 15) = 0 
Vôùi y + 1 = 0 y = -1 (loaïi)
Vôùi y – 15 = 0 y = 15 (x – 3)2 = 16 x – 3 = 4
+ x – 3 = 4 x = 7
+ x – 3 = - 4 x = - 1
d) (x2 + 1)2 + 3x(x2 + 1) + 2x2 = 0 (4)
Ñaët x2 + 1 = y thì
(4) y2 + 3xy + 2x2 = 0 (y2 + xy) + (2xy + 2x2) = 0 (y + x)(y + 2x) = 0
+) x + y = 0 x2 + x + 1 = 0 : Voâ nghieäm
+) y + 2x = 0 x2 + 2x + 1 = 0 (x + 1)2 = 0 x = - 1
Baøi 3:
a) (2x + 1)(x + 1)2(2x + 3) = 18 (2x + 1)(2x + 2)2(2x + 3) = 72. (1)
Ñaët 2x + 2 = y, ta coù
(1) (y – 1)y2(y + 1) = 72 y2(y2 – 1) = 72
 y4 – y2 – 72 = 0 
Ñaët y2 = z 0 Thì y4 – y2 – 72 = 0 z2 – z – 72 = 0 (z + 8)( z – 9) = 0
* z + 8 = 0 z = - 8 (loaïi)
* z – 9 = 0 z = 9 y2 = 9 y = 3 x = ...
b) (x + 1)4 + (x – 3)4 = 82 (2)
Ñaët y = x – 1 x + 1 = y + 2; x – 3 = y – 2, ta coù
(2) (y + 2)4 + (y – 2)4 = 82 
 y4 +8y3 + 24y2 + 32y + 16 + y4 - 8y3 + 24y2 - 32y + 16 = 82
 2y4 + 48y2 + 32 – 82 = 0 y4 + 24y2 – 25 = 0
Ñaët y2 = z 0 y4 + 24y2 – 25 = 0 z2 + 24 z – 25 = 0 (z – 1)(z + 25) = 0
+) z – 1 = 0 z = 1 y = 1 x = 0; x = 2
+) z + 25 = 0 z = - 25 (loaïi)
Chuù yù: Khi giaûi Pt baäc 4 daïng (x + a)4 + (x + b)4 = c ta thöôøng ñaët aån phuï y = x + 
c) (4 – x)5 + (x – 2)5 = 32 (x – 2)5 – (x – 4)5 = 32
Ñaët y = x – 3 x – 2 = y + 1; x – 4 = y – 1; ta coù:
 (x – 2)5 – (x – 4)5 = 32 (y + 1

File đính kèm:

  • docboi duong hoc sinh gioi_12835392.doc
Giáo án liên quan