Bài tập về khoảng cách từ điểm đến mặt phẳng và góc giữa đường thẳng và mặt phẳng (có đáp án)
Bài 6: Cho tam giác ABC vuông cân tại B, AB = a, vẽ SA = a và vuông góc với (ABC).
a) Tính khoảng cách từ A đến (SBC).
b) Tính góc tạo bởi SB và (SAC).
Bài 7: Cho hình chóp S.ABCD đáy là hình vuông cạnh a và SO vuông góc với đáy (O là tâm mặt đáy). Gọi M, N lần lượt là trung điểm SA và BC, biết góc của MN và (ABCD) là 600.
a) Tính MN và SO.
b) Tính góc của MN với mp (SBD).
BÀI TẬP VỀ KHOẢNG CÁCH TỪ ĐIỂM ĐẾN MẶT PHẲNG VÀ GÓC GIỮA ĐƯỜNG THẲNG VÀ MẶT PHẲNG Bài 1: Cho tứ diện ABCD có BCD là tam giác đều cạnh a, AB vuông góc với mp (BCD) và AB = a. Tính khoảng cách : Từ D đến (ABC) Từ B đến (ACD) Bài 2: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy và SA = h. Gọi O là tâm của hình vuông ABCD. Tính khoảng cách: Từ B đến (SCD) Từ O đến (SCD) Bài 3: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB vuông góc với đáy và SA = SB = b. Tính khoảng cách: Từ S đến (ABCD) Từ trung điểm I của CD đến (SHC), H là trung điểm AB. Từ AD đến (SBC). Bài 4: Cho hình chóp S.ABCD đáy là hình vuông cạnh a, SA = và vuông góc với đáy. Tính góc của: SC với (ABCD) SC với (SAB) SB với (SAC) Bài 5: Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, BC = a, SA = SB = SC = . Tính khoảng cách từ S tới mp (ABC). Tính góc giữa đường thẳng SA và mp (SAB). Bài 6: Cho tam giác ABC vuông cân tại B, AB = a, vẽ SA = a và vuông góc với (ABC). Tính khoảng cách từ A đến (SBC). Tính góc tạo bởi SB và (SAC). Bài 7: Cho hình chóp S.ABCD đáy là hình vuông cạnh a và SO vuông góc với đáy (O là tâm mặt đáy). Gọi M, N lần lượt là trung điểm SA và BC, biết góc của MN và (ABCD) là 600. Tính MN và SO. Tính góc của MN với mp (SBD). Đs: 1: a) ; b) 2: a) ; b) 3: a) ; b) ; c) 4: a) 600; b) ~ 20042’17’’; c)~ 15030’5’’ 5: a) ; b) ~54044’8’ 6: a) ; b) 300 7: a) MN= SO= ; b) ~63026’6’’.
File đính kèm:
- bai_tap_khoang_cach_va_goc_lop_11.docx